10.1 Modeling with Differmhial Equations
A defferential equation is an egratisu that relatus a fanction and one or more of cts derivatives.
Concepts

- difer.; ordu; dequer; fanily of
- initral conditiniss); solutonis to inidial value problems
A defferential equation is an
equardi involuring $x, y^{\prime}, y^{\prime \prime}, \ldots . y^{(n)}$ Whase y is is a function of x w.th
The n in the highest $y^{(n)}$ is the ordur of the eguation and the degree is the exponent that $y^{(n)}$ has

$$
2\left(y^{\prime \prime \prime}\right)^{4}+5 x y^{\prime}+7 x=0
$$

$3^{\text {rd }}$ ardu degue of 4

A particular sountion to a diff is is a function $y=f(x)$ that satisfies the diffs if.
A general southoi is an expression with anbitrang constants that rep resent the fanny of all particular sombris.
We know how to sole a diff es. of the form $y^{\prime}=f(x)$ by
integration $y=\int f(x) d x$
lhin_{4}
ex a) For what values of r does the fun action $y=e^{\text {rt }}$ satisfy

$$
\begin{array}{ll}
y^{\prime \prime}+y^{\prime}-6 y=0 \\
y=e^{r t} & y^{\prime \prime}+y^{\prime}-6 y=0 \\
y^{\prime}=r e^{r t} & r^{2} e^{r t}+r e^{r t}-6 e^{r t}=0 \\
y^{\prime \prime}=r^{2} e^{r t} \quad & e^{r t}\left(r^{2}+r-6\right)=0 \\
& e^{r t}(r+3)(r-2)=0 \\
& \begin{array}{l}
\text { indef. } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} \quad r=-3 \quad=\quad r=2
\end{array}
$$

Ential bounday conduhins are specified funchun values that are used to deternime a particular sombini to a diff eq. from the guneal souction.
ehie
$e \times b)$
a) Show that ereng mumben of the fanily of donchris, $y=C_{c}^{t / 2}$ is a somoun itthe difbey. $y^{\prime}=x y$

$$
\begin{array}{ll}
y=C e^{x / 2} & y^{\prime}=x y \\
y^{\prime}=C \frac{2 x}{2} e^{x^{2} / 2} & y^{\prime}=x\left(C e^{x / 2}\right) \\
y^{\prime}=C x e^{2 / 2} & y^{\prime}=C x e^{x^{2 / 2}}
\end{array}
$$

same
b) Graph several membus of the famly on the same set of axes (commmsereen) $x^{2} / 2$

$$
\begin{aligned}
& y=2 x x^{x^{2} / 2} \\
& y=x e^{x / 2} \\
& y=-3 x e^{x / 2}
\end{aligned}
$$

ete...
c) Find a somtari to the diff. \&f.
$y^{\prime}=x y$ that satisties the ininial
Conalhin $y(0)=5$

$$
\begin{array}{ll}
y=C e^{\pi / 2} & y(0)=5 \\
5=C e^{0 / 2} & (0,5) \\
5=C & y=5 e^{x^{2 / 2}}
\end{array}
$$

d) witi initioleondihin $y(1)=2$

$$
\begin{array}{ll}
y=C e^{x / 2} & y(1)=2 \\
2=C e^{1 / 2} & y=2 e^{-1 / 2} \cdot e^{x^{2} / 2} \\
C=2 e^{-1 / 2} & y=2 e^{\frac{x-1}{2}}
\end{array}
$$

10) $y(t)$ satisfies

$$
\frac{d y}{d t}=y^{4}-6 y^{3}+5 y^{2}
$$

a)

$$
\begin{array}{ll}
y=k & D=k^{4}-6 k^{3}+5 k^{2} \\
y^{\prime}=0 & k^{2}\left(k^{2}-6 k+5\right)=0 \\
\uparrow & k^{2}(k-5)(k-1)=0 \\
\frac{d y}{d t} & k^{2}=0 \quad k=5 \quad k=1 \\
& k=0
\end{array}
$$

b) y increasing

$$
\frac{d y}{d f}>0
$$

$$
\begin{aligned}
& y^{4}-6 y^{3}+5 y^{2}>0 \\
& y^{2}(y-5)(y-1)>0
\end{aligned}
$$

interval notation $y \in(-\infty, 0) \cup(0,1) \cup(5, \infty)$
C) y decreasing

$$
y \in(1,5)
$$

Homework for 10.1

$$
10.1 p 607 \quad 4-6,8,11,12,14
$$

