22. Graph $\ln(x)$, $\log_{10}(x)$, e^x , and 10^x on the same graph.

23. Sketch by transforming:

a.
$$y = \log(x+5) (= \log_{10}(x), \text{ of course}) \text{ and } b. y = -\ln(x) (= \ln(x^{-1}) = \ln(\frac{1}{x}))$$

#s 27 - 36 Solve for *x* :

27a.
$$e^{7-4x} = 6$$
 27b. $\ln(3x-10) = 2$ 28a. $\ln(x^2-1) = 3$ 28b. $e^{2x} - 3e^x + 2 = 0$

30a. $e^{3x+1} = k$ 30b. $\log_2(mx) = c$ 35. $e^{2x} - e^x - 6 = 0$

#s 37-8: Find the solution, correct to 4 decimal places:

- 37a. $\ln(x^3+1) 4 = 0 \ln$ 37b. $2e^{\frac{1}{x}} = 42$
- 39. Solve for *x*: a. $\ln(x) < 0$ b. $e^x > 5$
- 42. Given velocity = $v = v(t) = Ce^{-kt}$, show that...
- a. ... velocity is proportional to acceleration.
- b. ... the initial velocity is *C*.
- c. When is velocity = half of the initial velocity?