Week 14 Written Assignment Covers Section 5.1, 5.2, 6.1 – 6.4

- 5.1 Area Between Curves
- 5.2 Volumes by the Disk Method
- 6.1 Inverse Functions
- 6.2 Exponential Functions and their Derivatives
- 6.3 Logarithmic Functions
- 6.4 Derivatives of Logarithmic Functions
 - 1. (5 pts) Let $f(x) = 2x^3 7x^2 + 5x$ and $g(x) = x^3 x^2 3x$. Find the area of the region bounded by f(x), g(x), x = 0, and x = 5.
 - 2. Consider the region bounded by $y = (x-1)^3$, y = 0, x = 1, and x = 2.
 - a. (5 pts) Sketch this region and find its area.
 - b. (5 pts) Sketch the solid obtained by rotating this region about the line y = 3. Include a representative washer on your graph and write the integral for finding its volume by the disk method.
 - c. (5 pts) Evaluate the integral from part b.
 - d. (5 pts) Sketch the solid obtained by rotating this region about the line x = -3. Include a representative washer on your graph and write the integral for finding its volume by the washer method.
 - e. (5 pts) Evaluate the integral from part d.
 - 3. The function $f(x) = x^2 + 5x + 11$ is 1-to-1 on the restricted domain $D = \begin{bmatrix} -\frac{5}{2}, \infty \end{bmatrix}$.
 - a. (5 pts) Find the inverse function $f^{-1}(x)$. State its domain and range. Plug in x = 5 to determine $f^{-1}(5)$
 - b. (5 pts) Find $(f^{-1})'(x)$ by differentiating your answer for part a. Plug in x = 5 to determine $(f^{-1})'(5)$.
 - c. (5 pts) Find $(f^{-1})'(x)$ by applying a theorem about derivatives of inverse functions. Then find $(f^{-1})'(5)$, using this result.
 - 4. Differentiate each of the following:

a. (5 pts)
$$y = 7 \cdot 6^{x^2 - 3x}$$

b. (5 pts)
$$y = \ln\left(\frac{\sqrt[5]{x^2 - 3x}}{(3x^5 + 5x)^3}\right)$$

c. (5 pts) $y = \left[\sin(x)\right]^{x^2 - 3x}$ (Logarithmic Differentiation)
d. (5 pts) $y = (x^4 - 7x^2)^5 (\sin^8(x))$ (Use Logarithmic Differentiation)
e. (5 pts) $y = \ln(x^2 - 3x)$
f. (5 pts) $y = \log_7(x^2 - 3x)$

5. (Bonus 5 pts) Evaluate the indefinite integral: $\int \cot(x) dx$