From Chapter 1

A function f is called **increasing** on an interval I if

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I

It is called **decreasing** on I if

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

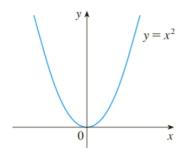


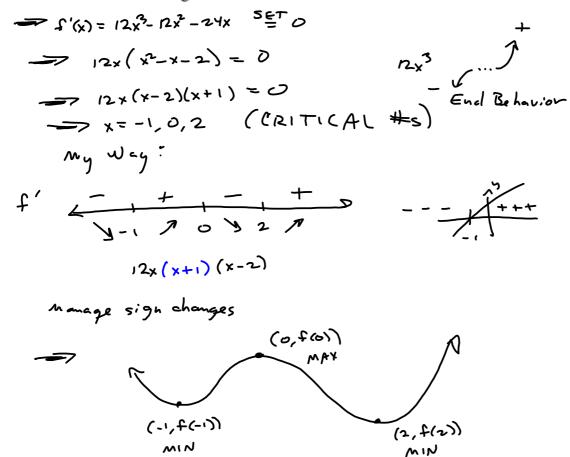
FIGURE 23

You can see from Figure 23 that the function $f(x) = x^2$ is decreasing on the interval $(-\infty, 0]$ and increasing on the interval $[0, \infty)$.

Increasing/Decreasing Test

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

EXAMPLE 1 Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

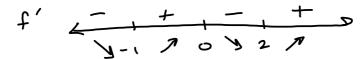


We know where the local max/min points are. We haven't found theiry-values, yet.

Book Way is painful.

$$x+1$$
 x $x-2$ $f'(x)$ $x < -1$ $x < x < 0$ $x < x < 0$ $x < -1$ $x < x < 0$ $x <$

You get the same sign pattern for f'.



Preview of 1st Derivative Test for Max/Min points on a graph.

Where the up arrow meets a down arrow is a max.

Where the down arrow meets an up arrow is a min!

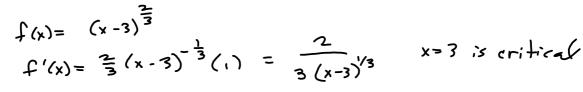
The book says that the 1st derivative in the example shows the function is

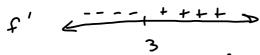
Critical Number for f.

The First Derivative Test Suppose that c is a critical number of a continuous function f.

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

Critical # r where f'(c) doesn + exist





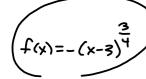
x > 3

$$g(x) = \frac{2}{3(x-3)^{\frac{1}{3}}}$$

= -0.666666666667

g(4)

= 0.66666666667



f(x)=-(x-3)4 Looking for one of these;

Comit think of one off the top.

5

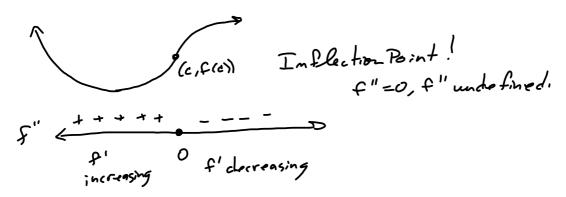
Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.

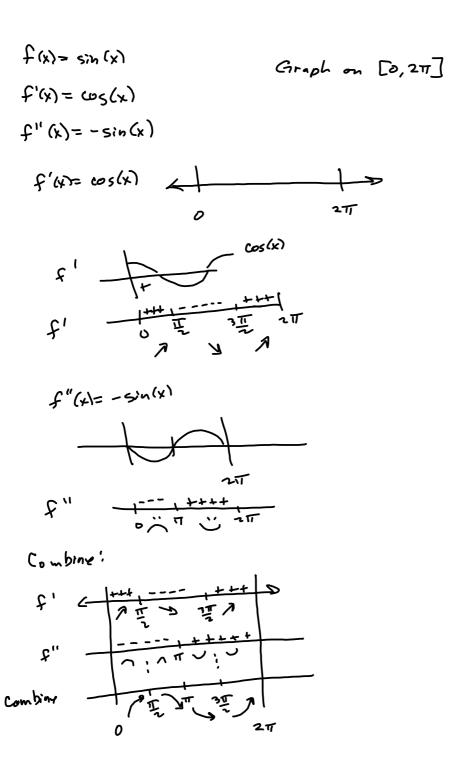
Concavity Test

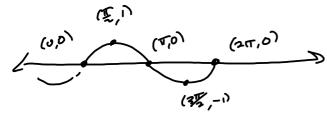
(a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.

(b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.







Complete graph shows all max/min points, inflection points and vertical/horizontal/oblique asymptotes.

The Second Derivative Test for max/min.

The Second-Derivative Test is a good check, but 1st-Derivative Test is pretty much all you need to determine max/min.