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From Chapter 1

A function f is called increasing on an interval 7 if
flxr) < fl(x2) whenever x; < x»in [/
It is called decreasing on 7 if

flx1) > flx2) whenever x; < x,in/
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FIGURE 23

You can see from Figure 23 that the function f(x) = x” is decreasing on the interval
(—o°, 0] and increasing on the interval [0, ).
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Increasing/Decreasing Test

(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

EXAMPLE 1 Find where the function f(x) = 3x* — 4x* — 12x? + 5 is increasing
and where it is decreasing.
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We know where the local max/min points are. We haven't found theiry-values, yet.
Book Way is painful.
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You get the same sign pattern forf'.
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Preview of 1st Derivative Test for Max/Min points on a graph.
Where the up arrow meets a down arrow is a max.
Where the down arrow meets an up arrow is a min!
The book says that the 1st derivative in the example shows the function is
decreasing on ¢ —eo,~y y( 2,2 ) 5"
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Critical Number for f.
DR (P deled)
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The First Derivative Test Suppose that ¢ is a critical number of a continuous
function f.

(a) If f' changes from positive to negative at ¢, then f has a local maximum at c.
(b) If f’ changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f'is positive to the left and right of ¢, or negative to the left and right of c,
then f has no local maximum or minimum at c.
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Definition If the graph of f lies above all of its tangents on an interval /, then it is
called concave upward on /. If the graph of f lies below all of its tangents on /, it

is called concave downward on /. - /}_‘_\
Concavity Test £¥>0 fl'e O
(a) If f"(x) > O for all x in Z, then the graph of f is concave upward on 1.
(b) If f"(x) < 0 for all x in /, then the graph of f is concave downward on /.

Definition A point P on a curve y = f(x) is called an inflection point if f is con-
tinuous there and the curve changes from concave upward to concave downward or
from concave downward to concave upward at P.
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For= sm 6
£'o0 = welxw)
£" 6= -sinK)

,? ‘W= tos (x)

Grqu- o l-:a, 'Z'TT]

October 15, 2025



251015.notebook October 15, 2025

€,N
[ v ID\ (f;o\ (4(\' I} oj
~’
(3% -0
(00 TP
- NAYL Complete graph shows all max/min points, inflection points
(%, / ) MA and vertical/horizontal/oblique asymptotes.
(T,o) TP
(g

(’m,o) I



251015.notebook October 15, 2025

The Second Derivative Test for max/min.

=0 and £'@Y >0
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The Second-Derivative Test is a good check, but 1st-Derivative Test is pretty much all you need
to determine max/min.
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