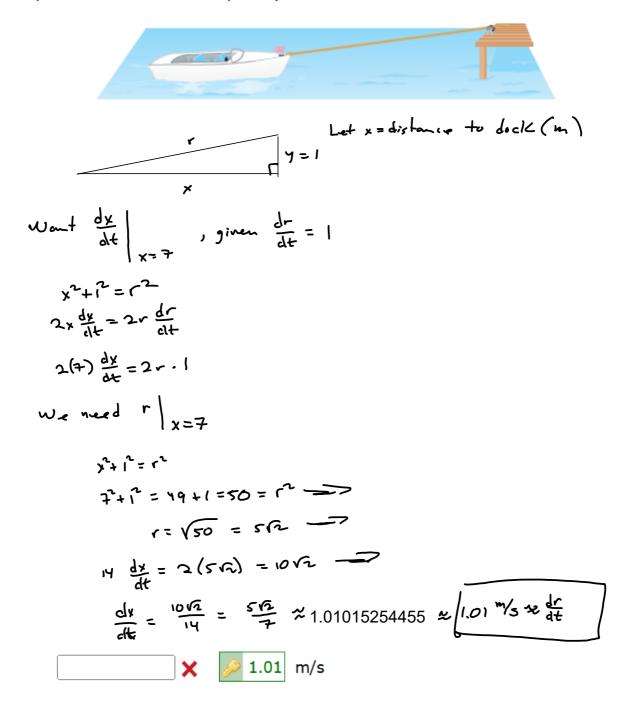
Section 2.8 - Related Rates. CHAIN RULE. ALSO, IMPLICIT DIFFERENTIATION.

Area is a function of r and r is a function of t.

Find the rate at which the area of an oil spill is growing, if the radius is growing at a rate of 2 m/s.

(a) If A is the area of a circle with radius r and the circle expands as time passes, find dA/dt in terms of dr/dt.

$$A = \pi r^2 = \pi \left(r(t)^2 \right)$$


$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$
, by Chain Rule.
$$A' = 2\pi r r'$$

(b) Suppose the radius is growing at 2 m/s. Find dA/dt when radius = 24 m.

Find
$$\frac{dA}{dt} = 2\pi r \cdot r' = 2\pi (24)(2) = 96 \frac{m^2}{s}$$

2.8 #10

A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 7 m from the dock? (Round your answer to two decimal places.)

