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Week 8 Assignment is Posted. Due 3/24 (after Spring Break)

fis increasing on an interval [ if f{x,) < f(x,) whenever x, <x; in . o (*1,"'("-\3

fis decreasing on an interval / if f(x,) > f(x,) whenever x; <x, in /. o
(<))

These definitions give rise to closed intervals of increase/decrease, so there was an overlap
between intervals of increase and decrease at local max/min points.

NOW, in Section 3.3, we're looking for theinterior of those intervals, i.e., open intervals of
increase/decrease. The book sort of finesses the whole thing by asking for opern intervals of
increase/decrease, eliminating the overlap of increase/decrease at local max/min points.

This is a better way of looking at it, since f' > 0 means fis increasing and f' <0 means f is
decreasing. f'=0 or f' undefined are taken out of consideration. These are important (critical)
points where max/min values might be found. They're the Boundary Points of intervals of
increase/decrease, when they correspond to max/min points* on tl:e graph. bt
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*Remember that critical numbers are candidates for max/min but might not be, for instance
terrace points and points where the function has a vertical tangent at a critical point, which I
haven't shown you, yet.

Increasing/Decreasing Test
(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

Proof uses MVT. I'll prove (a), briefly.
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The First Derivative Test Suppose that ¢ is a critical number of a continuous
function f. Max

ok | | |
(a) If f’ changes from positive to negative at ¢, then f has a local maximum at c.
(b) If f’ changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f'is positive to the left and right of ¢, or negative to the left and right of ¢,
then f has no local maximum or minimum at ¢. Tepngce Po int

These are good words, and it's good to understand this, formally, but informally/semi-formally, it's
very easy to understand and apply, if you can build and interpret a sign pattern. The arrows point
the way. You're not slavishly referring to 3 bullet points when working these. You're just analyzing
a sign pattern and understanding what it represents.

Polynomial-type situation. Suppose f' has the following sign pattern. Assume f is continuous on
the entire real line.
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Fractional-exponent situation: Assume that all the points are critical values.
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This time, suppose that x = 2000 is in the domain of £, but x = 4 is not.
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Sign Patterns:

Factored polynomials and rational functions are the best.

After that come trig functions that are easy to "see." Not all are.
Sign patterns for the 2 cases above are quick and easy.

All other cases? Plug in a test value in each subinterval. Evaluate just far enough to determine
the sign. Learn just how much you have to turn the crank for the decision.
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Week B greg:
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