\qquad

You know the drill. And remember to circle final answers.

1. Ch 4 (10 pts) Use the limit definition of the definite integral to evaluate $\int_{-1}^{2}\left(2 x^{2}-x\right) d x$. For simplicity, use the limit of the right-endpoint Riemann sum. On the final, I'll be looking for the correct Riemann Sum. Evaluating it will be bonus.
2. We find the area of the region bounded by $y=\sqrt{x}, y=x-2$, and $x=0$ in two ways.
a. Ch 3 (5 pts) Sketch the region.
b. Ch 4 (5 pts) Write the area as an integral with respect to x. Draw a representative rectangle on the sketch from part a.
c. Ch 4 (5 pts) Evaluate the integral from part b.
d. Ch 3 (5 pts) Sketch the region again.
e. Ch 4 (5 pts) Write the area as an integral with respect to y. Draw a representative rectangle on the sketch from part d.
f. Ch 4 (5 pts) Evaluate the integral from part e.
g. Ch 4 (5 pts bonus) Compare your results from parts c and f .
h. Ch 5 (5 pts) Suppose we rotated the region about the line $x=-1$. Sketch the graph, and write the integral representing the volume of the solid of revolution obtained. Show a representative disc or washer.
3. We explore absolute value. Let $f(x)=2 \cos (x)-1$
a. Ch 3 (5 pts) Sketch a complete graph of $f(x)$ on the interval $[0,2 \pi]$.
b. Ch 4 Evaluate $\int_{0}^{2 \pi} f(x) d x$.
c. Ch 4 Sketch a complete graph of $g(x)=|2 \cos (x)-1|=|f(x)|$ on the interval $[0,2 \pi]$.
d. Ch 4 Evaluate $\int_{0}^{2 \pi} g(x) d x$.
4. Evaluate the indefinite integrals:
a. Ch $4(5 \mathrm{pts}) \int(2 x-3)^{4} d x$
b. Ch $4(5 \mathrm{pts}) \int(2 x-3)^{4} x^{2} d x$
c. Ch $4(5 \mathrm{pts}) \int \sec ^{4}(x) \tan (x) d x$
d. Ch $6 \& \operatorname{Ch} 4 \int \sin (x) \cdot e^{\cos (x)} d x$
5. Ch 4 Suppose I'm pacing back and forth, thinking my usual deep thoughts, and my rate of speed is given by $r(t)$, in feet per second. Tell me what the following integrals represent:
a. $(5 \mathrm{pts}) \int_{0}^{3600}|r(t)| d t$
b. $(5 \mathrm{pts}) \int_{0}^{3600} r(t) d t$
6. Perform the indicated differentiation:
a. Ch $4(5 \mathrm{pts}) \frac{d}{d x} \int_{0}^{x} \frac{\sin (3 t)}{t^{2}+4} d t$
b. Ch $4(5 \mathrm{pts}) \frac{d}{d x} \int_{x^{2}}^{\cos (x)} \frac{\sin (3 t)}{t^{2}+4} d t$
7. The function $f(x)=x^{2}-3 x+11$ is 1 -to-1 on the restricted domain $D=\left[\frac{3}{2}, \infty\right)$.
a. Ch $6(10 \mathrm{pts})$ Find the inverse function $f^{-1}(x)$. State its domain and range.
b. Ch 6 (5 pts) Find $\left(f^{-1}\right)^{\prime}(5)$, directly, by differentiating your answer for part a.
c. Ch 6 (5 pts) Find $\left(f^{-1}\right)^{\prime}(5)$ by applying a theorem regarding derivatives of inverse functions.
8. (5 pts each) Find the derivative with respect to x.
a. Ch $6 y=7 \cdot 5^{x^{2}-3 x}$
b. Ch $6 y=\ln \left(\frac{\sqrt[5]{x^{2}-3 x}}{\left(3 x^{5}+5 x\right)^{3}}\right)$
c. Ch $6 y=\log _{5}\left(x^{2}-3 x\right)$
d. Ch $6 y=[\cos (x)]^{x^{2}-3 x}$
9. Ch $6(10 \mathrm{pts})$ The half-life of Millsium is 75 years. How old is a Mills skeleton from a burial mound if there is 17% of its natural radioactive Millsium remaining?
