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T Graph of the length of daylight from March 21 through December 21 at
various latitudes.
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Hours 1n varied latitudes

Mar. | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec.
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1.5 - Limit of a Function

@ Intuitive Definition of a Limit Suppose f(x) is defined when x is near the
number a. (This means that f is defined on some open interval that contains a,
except possibly at a itself.) Then we write Ch <”¢hjf .

lim f(x) = L o e l-péd-_L.{, Slmq/[
| by making Ix-= |
oIl €nough /

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by
restricting x to be sufficiently close to a (on either side of a) but not equal to a.

and say “the limit of f(x), as x approaches a, equals L”

The limit of the difference quotient is the limit in which we're most
interested, and it always takes the form of a 0/0 situation!

Book Example:
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So the limit is zero if you are too naive. So beware of numerical methods....
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Definition of One-Sided Limits We write

lim f(x) =L

xX—*d ~
and say the left-hand limit of f(x) as x approaches a [or the limit of f(x) as
x approaches a from the left] is equal to L if we can make the values of f(x)

arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Same thing for right-handed limits. Just turn the "-'"" into a ""+" and replace

"left" with "right." D .[.‘.69 (I
x»at \/

The "regular' limit exists if and only if the left and right limits both exist and

both agree.
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B Infinite Limits

1
EXAMPLE 8 Find lin"(Ll — if it exists.
xX— X

To indicate the kind of behavior exhibited in Example 8, we use the ngtation
-x=0

lim — = =
x—0 x- ".7""’

|
This does not mean that we are regarding % as a number. Nor does it mean that the limit
exists. It simply expresses the particular way in which the limit does not exist: 1/x* can

be made as large as we like by taking x close enough to 0. Mm>O
In general, we write symbolically > Gwe Me om
CW"'7 x close ~<mbf-¢9)\ ‘LO =

lim f(x) = o

to indicate that the values of f(x) tend to become larger and larger (or “increase without
bound™) as x becomes closer and closer to a.

@ Intuitive Definition of an Infinite Limit Let f be a function defined on both
sides of a, except possibly at a itself. Then

lim f(x) =

X—*a

means that the values of f(x) can be made arbitrarily large (as large as we please)
by taking x sufficiently close to a, but not equal to a.
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@ Definition Let f be a function defined on both sides of a, except possibly at
a itself. Then

lim f(x) = —o

X—a

means that the values of f(x) can be made arbitrarily large negative by taking x
sufficiently close to a, but not equal to a.

The symbol lim, ., f(x) = —o can be read as “the limit of f(x), as x approaches a, is
negative infinity” or “f(x) decreases without bound as x approaches a.” As an example

we have
) I
im| —— ] = —
x—0 xX°

Useful for a graph, but strictly speaking, these infinite limits do not exist as real
numbers.

These infinite limits correspond to vertical asymptotes in graphs.

Sketch the graph of a simple linear/linear rational function.

Lo = X -5 auwF poinks 1 ¥=-2, ¢
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Section 1.6 - Limit Laws

Limit Laws Suppose that ¢ is a constant and the limits

lim f(x) and lim g(x)

X—a X—a

exist. Then

L lim [f(x) + g()] = lim £(x) + lim g(x)
2. lim [f(x) = g(0] = lim f(x) — lim g(x)
3. lim [cf(0)] = ¢ lim f(x)

4. 1im [f(x)g(0)] = lim f(x) - lim g(x)

foo  lim £

X—>d

5. lim = = if lim g(x) # 0
x—a g(x) hm g(x) x—a q

xX—a
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Let's speed the evaluations up:

Direct Substitution Property If f is a polynomial or a rational function and a is
in the domain of f, then

lim /(x) = f(a)

If f(x) = g(x) when x # a, then lim f(x) = lim g(x), provided the limits exist.

X—a X—a

This is why there's a string of equal signs from the original difference quotient
to the final passage to the limit at the end, after you cancel out the A's.
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