1. (10 pts) Evaluate
$$\lim_{x\to 3} \frac{x^2-4}{x^3-8}$$
 by factoring.

2. (10 pts) Evaluate each of the following by factoring and simplifying. One exists. The other doesn't.

a.
$$\lim_{x \to -7} \frac{3x^2 + 17x - 28}{4x^2 + 31x + 21}$$

$$\dots \quad 3x^2 - 25x + 28$$

b.
$$\lim_{x \to -7} \frac{5x^2 - 25x + 25}{4x^2 + 31x + 21}$$

- 3. (10 pts) Prove that $\lim_{x\to 5} (7x-3) = 32$ (This is the $\varepsilon \delta$ proof you're dying to do.)
- 4. (10 pts) Compute the derivative of $f(x) = x^2 3x + 4$ by the definition of derivative. This means taking the limit of a difference quotient.
- 5. (5 pts each) Compute the derivatives of each of the following. Do not simplify your answer.
 - a. $y = 3x^{2} 6x + \frac{7}{x^{3}}$ b. $y = (x^{3} + 5x)(4x - 1)$ c. $y = \frac{x^{2} + 5x}{7x - 1}$ d. $y = (x^{3} + 7x)^{4}(4x - 1)^{11}$ e. $y = \csc^{2}(6x - 7)$ f. $y = \sin(\tan(x^{2} - 5))$
- 6. (10 pts) Find an equation of the tangent line to $f(x) = \cos(x)$ at $x = \frac{\pi}{4}$. Then sketch the graph of this situation, with the function and its tangent line, together on the same set of axes.
- 7. (5 pts) Use your result from the previous problem to approximate $\cos(40^{\circ})$
- 8. Find all values of x such that $f(x) = \sin(2x) x$ has a horizontal tangent on the interval...
 - a. (5 pts) $[0, 2\pi)$
 - b. (5 pts) $(-\infty,\infty)$

9. (10 pts) Find
$$\frac{dy}{dx}$$
, given that $x^2y^2 + 2xy - \sin(xy) = 3$

BONUS SECTION:

