Hours in varied latitudes

	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
20°	12	12.3	12.9	13	12.8	12.5	12	11.6	11	10.9
30°	12	13.2	13.7	14	13.8	12.8	12	11.2	10.2	10
40°	12	13.5	14.3	14.9	14.2	13.2	12	10.8	9.7	9.1
50°	12	14	15.5	16.1	15.7	14	12	10	8.3	7.9
60°	12	14.9	17.7	18.2	17.8	15	12	9	6.5	5.7

$$b_{x}=2\pi$$
 when $x=365$
 $365b=2\pi$
 $b=\frac{2\pi}{365}$

We want to find the tangent to the function at the point P(1, 1):

Don't have Excel? Check out Google Docs on your aims.okta.edu. Should be able to save the Excel file to Google Drive, and then open up the spreadsheet from there.

FIGURE 2

Q approaches P from the right

Spreadsheet coming in from the right:

	-						
E17	v]:[>	< \ fx					
	Α	В	С	D	Е	F	
1	Example 1	F)	(Q.		
2		x1	у1	x2	y2	m(PQ)	
3		1	1	2	4	3	
4		1	1	1.5	2.25	2.5	
5		1	1	1.25	1.5625	2.25	
6		1	1	1.1	1.21	2.1	
7		1	1	1.01	1.0201	2.01	
8		1	1	1.001	1.002	2.001	
9		1	1	1.0001	1.0002	2.0001	
10		1	1	1.00001	1.00002	2.00001	
11							

Just a screenshot of what I did.

See Spreadsheet! Click Here!

This will download the spreadsheet. Go to your Downloads folder and open it up, if you have Excel or Open Office.

1 Intuitive Definition of a Limit Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

making the values of x and trarily close to a.

Want | f(x) - L | small when

In the seguel:

1x-21 small

Make | f(x)-L| 28

when | x-21 < 8

FIGURE 2 $\lim_{x \to a} f(x) = L$ in all three cases

Next up: Use the spreadsheet to do limits unerically.

It's nice to have that fall-back, but you want to use either a

EY 2: 5 = (=) A!

FIGURE 7

Heaviside Function

2 Definition of One-Sided Limits We write

$$\lim_{x \to a^{-}} f(x) = L$$

and say the **left-hand limit of** f(x) **as** x **approaches** a [or the **limit of** f(x) **as** x **approaches** a from the **left**] is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less than a. Similarly, if we require that x be greater than a, we get "the **right-hand limit of** f(x) as x approaches a is equal to L" and we write

$$\lim_{x \to a^+} f(x) = L$$

Thus the notation $x \to a^+$ means that we consider only x greater than a. These definitions are illustrated in Figure 9.

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L$$

Limit exists iff the left- and right-hand limits exist and are the same value. Then we can drop the +/- jazz.

Mart

4 Intuitive Definition of an Infinite Limit Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

4 Intuitive Definition of an Infinite Limit Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Challenge: Give me a number. Make it as big as you want.

Response: I take x close enough to 0 to make f(x) bigger than the number you gave me. In fact, I can do this all day!

Vertical Asymptotes

Definition The vertical line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

EXAMPLE 9 Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

FIGURE 15