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Increasing/Decreasing Test ﬂ
(a) If f'(x) = 0 on an interval, then f is increasing on that interval.

(b) If f'(x) < 0 on an interval, then f is decreasing on that interval. \§

K

The First Derivative Test Suppose that c is a critical number of Mk

function f. /\\
C

(a) If /' changes from positive to negative at ¢, then f has a local maximum at .
If f’ changes from negative to positive at ¢, then f has a local minimum at c.
f /' does not change sign at ¢ (for example, if /" is positive on both sides of ¢
or negative on both sides), then f has no local maximum or minimum at c.

S S

Definition If the graph of f lies above all of its tangents on an interval I, then it is
called concave upward on /1. If the graph of f lies below all of its tangents on [, it
is called concave downward on /.
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Concavity Test
(a) If f"(x) = 0 for all x in /, then the graph of f is concave upward on L.

(b) If f"(x) < O for all x in [, then the graph of f is concave downward on L.

Definition A point P on a curve y = f(x) is called an inflection point if f is con-
tinuous there and the curve changes from concave upward to concave downward
or from concave downward to cogcave upward at F.
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The Second Derivative Test Suppose [ is continuous near c.
(a) If f'(c) = 0 and f"(c) = 0, then f has a local minimum at c.
(b) If f'(c) = 0 and f"(c) < 0, then f has a local maximum at c.
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4. (10 pts) Suppose a function g satisfies all of the following properties. Sketch a graph of g that
incorporates all of the following properties into it:

gl)=-2 g(2)=2 g(3)=4

g)=0 g(B)=0

g'(x)>0on (1,3)u(3,%), g'(x)<0 on(-om,1)
g"(x)>0 on (-02)u(3,0),  g"(x)<0 on (2.3)

(3,4)
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3. (10 pts) Tet f(x)=2sin(x)cos(x)—x. Find all local extrema in the interval [0,27].
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Suppese £V = (x-2) (x s (x-3) (x+27)
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