\qquad

1. The point $P=(4,2)$ lies on the graph of $f(x)=\sqrt{x}$. Let $Q=(x, \sqrt{x})$ be another point on the graph of f.
a. (5 pts) Find the slope $m_{P Q}$ to 4 decimal places for the following values of x :
o $\quad x=3.999$

O $x=4.001$
b. (5 pts) Based on your work for part a., estimate the slope of the tangent line $m_{\text {tan }}$ at $x=4$.
c. (5 pts) Based on your work for part b., construct an equation for the tangent line to $f(x)=\sqrt{x}$. (Point-slope form is just fine: $y=m\left(x-x_{1}\right)+y_{1}$.)
2. (10 pts) Sketch the graph of a function that meets all of the following requirements:
a. $\lim _{x \rightarrow 3^{-}} f(x)=-\infty$
b. $\lim _{x \rightarrow 3+} f(x)=\infty$
c. $\lim _{x \rightarrow-2^{-}} f(x)=3$
d. $\lim _{x \rightarrow-2^{+}} f(x)=2$
e. $\quad f(-2)=4$

3. Find the limit, if it exists. If it doesn't, say so (in writing, of course).
a. (5 pts) $\lim _{x \rightarrow-5} \frac{x^{2}+2 x-15}{x+5}$
b. (5 pts) $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{2}+3}$
c. (5 pts) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x+1}{x^{2}-9}$
d. (5 pts) $\lim _{x \rightarrow-4^{-}} \frac{x^{2}-16}{|x+4|}$
4. (10 pts) Use the precise definition of a limit to prove that $\lim _{x \rightarrow 3}\left(\frac{1}{3} x+5\right)=6$.
5. (Bonus 5 pts) Use the precise definition of a limit to prove that $\lim _{x \rightarrow 2}\left(x^{2}+5 x-6\right)=8$.
6. The graph of a function f is given below. Evaluate each limit, if it exists. If the limit does not exist, explain why. Employ the language (shorthand) of limits in your explanation(s), as needed.

a. (5 pts) $\lim _{x \rightarrow-1} f(x)$
b. (5 pts) $\lim _{x \rightarrow 3^{-}} f(x)$
c. (5 pts) $\lim _{x \rightarrow 3^{+}} f(x)$
d. $(5 \mathrm{pts}) \lim _{x \rightarrow 3} f(x)$
e. (5 pts) Use the limit definition of continuity to explain why f is not continuous at $x=-1$.
f. (5 pts) Use the limit definition of continuity to explain why f is continuous at $x=4$
7. Let $f(x)=\sqrt{x}$. Then the slope of the secant line between two points, $(x, f(x))$ and $(4, f(4))$, is given by the difference quotient:

$$
m_{\mathrm{sec}}=\frac{f(x)-f(4)}{x-4} .
$$

a. (5 pts) Write the difference quotient for f at $x=4$. (Don't overthink this one.)
b. (5 pts) Based on your work in part a., compute the slope of the tangent line to f at $x=4$, by computing the limit $m_{\tan }=\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}$. Hint: Rationalize the numerator.
c. (5 pts) Based on your work in part b., construct an equation of the tangent line to f at $x=4$. If you didn't get b., then make up a number for part b. and use it ! Leave your answer in point-slope form.

