$201 \quad S 2.5$
waite as $\stackrel{f}{f}(g(x))$

$$
\begin{array}{ll}
\begin{array}{l}
1 \\
=\sqrt[3]{1+4 x}
\end{array} & \text { Let } f(u)=\sqrt[3]{4} \\
y^{\prime}=\frac{1}{3}(4 x+1)^{-2 / 3}(4) & g(x)=4 x+1 \\
y=\tan (\pi x) \quad & f(u)=\tan u \\
y^{\prime}=\left(\sec ^{2}(\pi x)\right)(\pi) \quad g(x)=\pi x \\
3 \quad y=\sqrt{\sin x}=(\sin x)^{\frac{1}{2}} \quad f(u)=\sqrt{4}=u^{\frac{1}{2}} \\
y^{\prime}=\left(\frac{1}{2}(\sin x)^{-\frac{1}{2}}\right)(\cos x) \quad g(x)=\sin x
\end{array}
$$

Find the derivative
4

$$
\begin{aligned}
& F(x)=\left(x^{4}+3 x^{2}-2\right)^{5} \longrightarrow \\
& F^{\prime}(x)=\left(5\left(x^{4}+3 x^{2}-2\right)^{4}\right)\left(4 x^{3}+6 x\right) \\
& F(x)=\sqrt{-2 x+1}=(-2 x+1)^{\frac{1}{2}} \longrightarrow \\
& F^{\prime}(x)=\frac{1}{2}(-2 x+1)^{-\frac{1}{2}}(-2) \\
& \text { (6) } f(2)=\frac{1}{z^{2}+1}=\left(z^{2}+1\right)^{-\frac{1}{2}} \\
& f^{\prime}(z)=-\frac{1}{2}\left(z^{2}+1\right)^{-3 / 2}(2 z) \\
& \text { My -1/2 power should be-1 power. } \\
& \text { Greg sup. } \\
& \square \\
& y=\cos \left(x^{3}+a^{3}\right) \Longrightarrow \begin{array}{l}
\text { This one is poorly posed, } \\
\text { because it's not clark }
\end{array} \\
& \text { because it's not clear which is } \\
& \text { K } \\
& \text { the variable with respect to } \\
& \text { Aus were differentiating. } \\
& \text { Author assumes it's } x \text {. } \\
& x^{8} y=x \sec (k x) \rightarrow y^{\prime}=1 \sec \left(k^{2} x\right)+x(\sec (k x) \tan (k x))(k)
\end{aligned}
$$

$201 \leqslant 2,5 \# 5$

$$
\begin{aligned}
& 4 \\
& f(x)=(2 x-3)^{4}\left(x^{2}+x+1\right)^{5} \Longrightarrow \\
& f^{\prime}(x)=\left(4(2 x-3)^{3}(2)\right)\left(x^{2}+x+1\right)^{5}+(2 x-3)^{4}\left(5\left(x^{2}+x+1\right)^{4}(2 x+1)\right. \\
& 10 h(x)=(t+1)^{\frac{2}{3}}\left(2 t^{2}-1\right)^{3} \rightarrow \\
& (2 x-3)^{4}\left(5\left(x^{2}+x+1\right)^{4}\right)(2 x+1) \\
& h^{\prime}(x)=\frac{2}{3}(t+1)^{-1 / 3}\left(2 t^{2}-1\right)^{3}+(t+1)^{2 / 3}\left(3\left(2 t^{2}-1\right)^{2}(4 t)\right) \\
& y=\left(\frac{x^{2}+1}{x^{2}-1}\right)^{3} \Rightarrow \\
& y^{\prime}=3\left(\frac{x^{2}+1}{x^{2}-1}\right)^{2}\left(\frac{2 x\left(x^{2}-1\right)-\left(x^{2}+1\right)(2 x)}{\left(x^{2}-1\right)^{2}}\right) \\
& \square \\
& y=\sin (x \cos x) \longrightarrow \\
& y^{\prime}=(\cos (x \cos x))(\cos x-x \sin x) \\
& (13)=\left(\frac{z-1}{z+1}\right)^{\frac{1}{2}} \Longrightarrow \\
& f^{\prime}(z)=\frac{1}{2}\left(\frac{z-1}{z+1}\right)^{-\frac{1}{2}}\left(\frac{1(z+1)-(z-1)(1)}{(z+1)^{2}}\right)
\end{aligned}
$$

$201 S_{2} 25$

$$
\begin{aligned}
& \left(\sqrt[14]{14} y=\frac{r}{\sqrt{r^{2}+1}}=r\left(r^{2}+1\right)^{-\frac{1}{2}}\right. \\
& y^{\prime}=\left(r^{2}+1\right)^{-1 / 2}+r\left(-\frac{1}{2}\left(r^{2}+1\right)^{-3 / 2}\right)(2 r) \\
& y=\sin \sqrt{x^{2}+1} \\
& y^{\prime}=\left(\cos \sqrt{x^{2}+1}\right)\left(\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(2 x)\right) \\
& y^{\prime}=\cos (\tan (2 x))\left(\sec ^{2}(2 x)\right)(2)
\end{aligned}
$$

(517a) Find eq'm o Dton hine to the curve $y=\tan \left(\frac{\pi x^{2}}{4}\right) G \quad(1,1) \sum_{1}^{\sqrt{2}}$,

$$
\begin{aligned}
& \text { curve } y=\tan \left(\sec ^{2}\left(\frac{\pi x^{2}}{4}\right)\right)\left(\frac{2 \pi x}{4}\right)=\left(\sec ^{2}\left(\frac{\pi x^{2}}{4}\right)\left(\frac{\pi}{2} x\right)\right. \\
& y^{\prime}=\left(\sec ^{2}\left(\frac{\pi}{4}\right)\left(\frac{\pi}{2}\right)=(\sqrt{2})^{2}-\frac{\pi}{2}=\pi=m_{\tan }\right. \\
& y^{\prime}(1)=\pi(x-1)+1
\end{aligned}
$$

201 S 2.5 H
(17b (b) Ill ushate wh graph
(SuNotes)
(18) If g is twice-dif b^{l} and $f(x)=x g\left(x^{2}\right)$, fudd $f^{\prime \prime}$ is terms of $9,9^{\prime}, g^{\prime \prime}$ I

$$
\begin{aligned}
f^{\prime}(x) & =g\left(x^{2}\right)+x g^{\prime}\left(x^{2}\right)(2 x)=g\left(x^{2}\right)+2 x^{2} g g^{\prime}\left(x^{2}\right) \\
f^{\prime \prime}(x) & =g^{\prime}\left(x^{2}\right) \cdot 2 x+4 x g^{\prime}\left(x^{2}\right)+2 x^{2} g^{\prime \prime}\left(x^{2}\right)(2 x) \\
& =2 x g^{\prime}\left(x^{2}\right)+4 x g^{\prime}\left(x^{2}\right)+4 x^{3} g^{\prime \prime}\left(x^{2}\right)
\end{aligned}
$$

19 Fiod $D^{103} \cos (2 x)$ by see ing the pattem.

$$
\begin{aligned}
& D^{\prime} \cos (2 x)=-2 \sin (2 x) \\
& D^{2} \cos (2 x)=-4 \cos (2 x)=-2^{2} \cos (2 x) \\
& D^{3} \cos (2 x)=+8 \sin (2 x)= \\
& D^{4} \cos (2 x)=+16 \cos (2 x) \\
& D^{5}(\cos (2 x)=-32 \cos (2 x) \\
& 103=\frac{100+3}{\frac{6}{+}(\text { mult. of } 4)}+2^{103} \sin (2 x)
\end{aligned}
$$

