201823 8
Find egin of tam Dive to the curve (a) the given point.

$$
\begin{aligned}
& y=\frac{2 x}{x+1}\left(2(1)=y^{\prime}=\frac{2(x+1)-(2 x) a)}{(x+1)^{2}}=\right. \\
& y(1)=\frac{2(2)-2}{2^{2}}=\frac{4-2}{4}=\frac{1}{2}=4 \\
& y=\frac{1}{2}(x-1)+1 \quad y=m(x-x)+y \\
& y=x^{4}+2 x^{2}-x(9)(1,2) \\
& y^{\prime}=4 x^{3}+4 x-1 \\
& y=4+4-1=7
\end{aligned}
$$

Finch tan Ais andNonMAL

$$
\begin{aligned}
& 3=x+\sqrt{x}=x+x^{\frac{1}{2}}(q)(1,2) \quad \text { aNE } \\
& y^{\prime}=1+\frac{1}{2} x^{-\frac{1}{2}} \Rightarrow y^{\prime}(1)=1+\frac{1}{2}=\frac{2}{2}=m_{1} \operatorname{con} \\
& =-\frac{2}{3}
\end{aligned}
$$

TAN LiNE : $y=\frac{3}{2}(x-1)+2$
Noma Line e $y=-\frac{2}{3}(x-1)+2$
$201823 E$

$$
\begin{aligned}
& \text { (} y=\frac{3 x+1}{x^{2}+1}(9,2) x \\
& y^{\prime}=\frac{3\left(x^{2}+1\right)-(3 x+1)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{3(2)-(4)(2)}{2^{2}}=\frac{6-8}{4}=-\frac{2}{4}=-\frac{1}{2}=m_{4} \\
& y^{\prime}(1)=\frac{4}{\square}=2
\end{aligned}
$$

$$
\text { TAN LNB: } y=-\frac{1}{2}(x-1)+2
$$

$$
\text { NoRMA LiNE } y=2(x-1)+2
$$

Find it ot $2^{\text {nd }}$ Leminatres

$$
\begin{aligned}
& 5 \quad O(x)=x^{4}-3 x^{3}+16 x= \\
& P^{\prime}(x)=4 x^{3} 9 x^{2}+16 \\
& f^{\prime \prime}(x)=12 x^{2}-16 x
\end{aligned}
$$

(6) Egim of motion it $9=t^{3} 3 t$ whares s ies m and t is s .
(a) Frod melocity d arcellnator Rncs

$$
v(t)=3 t^{2}-3-a(t)=6 t
$$

(b) $3(1)=6$
(a) Genpz

Show that $6 x^{3}+5 x-3$ has no tom line with $m=4$.

$$
\begin{aligned}
P^{\prime}(x)=12 x^{2}+5 \text { SEr } 4 & \Rightarrow \\
12 x^{2}+1=0 & \rightarrow \text { Never } L \\
& \begin{array}{l}
12 x^{2}+1>0 \forall x \\
\\
\\
12 x^{2}+5=m=4
\end{array}
\end{aligned}
$$

\square Badeqm of normal his has he
to parabola $y=x^{2}-5 x+4$ that 1 to $x-3 y=5$

$$
\begin{aligned}
& \text { Him. Tricky. This might be right, in spite of me. Wanting a } \\
& \text { normal to the curve that's parallel to the line. I think that's the } \\
& \text { same as finding a spot where the tangent to the curve is } \\
& \text { perpendicular to the line. } \\
& \text { Yup. I think I got it right, in spite of myself. }
\end{aligned}
$$

$$
\begin{aligned}
& y=1-5+4=0 \\
& y y=-3(x-1)+6
\end{aligned}
$$

$$
\text { or } y=-3 x+3
$$

$$
\begin{aligned}
& \text { No. Want Parallel to that line. } \\
& x-3 y=5-3 y+x+5 \\
& \leq 4=\frac{1}{3} x+\frac{5}{3}=4=\frac{1}{3}-\infty M 1=\cdots 3
\end{aligned}
$$

20182.3 IT
$9 P(5)=1, P(5)=6,9(5)=-3,9^{\prime}(5)=2$
(a)

$$
\begin{aligned}
(f g)^{\prime}(5) & =f^{\prime}(5) g(5)+f(5) g^{\prime}(5) \\
& =(6)(-3)+(1)(2)=-18+2=-16
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left(\frac{f}{g}\right)^{\prime}(5)=\frac{f^{\prime}(5) g(5)-f(5) g^{\prime}(5)}{(g(5))^{2}} \\
& =\frac{(6)(-3)-(1)(2)}{(-3)^{2}}=\frac{-18-2}{9}=-\frac{20}{9}
\end{aligned}
$$

$$
\text { (a) }\left(\frac{g}{f}\right)^{\prime}(5)=\frac{g^{\prime}(5) f(5)-g(5) f^{\prime}(5)}{(f(5))^{2}}
$$

$$
=\frac{(2)(1)-(-3)(6)}{1^{2}}=2+10=20
$$

10
If $f(x)=\sqrt{x} g(x), g(4)=8 g g^{(}(4)=7$ Pitd $P^{\prime}(4)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} g(x)+x^{\frac{1}{2}} g^{\prime}(x)= \\
f^{\prime}(x) & =\frac{1}{2}(4)^{-\frac{1}{2}} g^{(4)}+4^{1 / 2} g^{\prime}(x) \\
& =\frac{1}{2 \cdot 2} \cdot 8+2 \cdot 7=2+14=16
\end{aligned}
$$

201
${ }^{11}$ Find a cubir func. $y=a x^{3}+b x^{2}+d x+d$
I it has horizontal tangents a ($-2,6$)d(2,0)
$y^{\prime}=3 a x^{2}+2 b x+c$ SETO H mmam

$$
\begin{aligned}
& f(2)=0 \Rightarrow f(x)=a(x-2)\left(x^{2}+b x+c\right) \\
& f(-2)=6 \Rightarrow f(-2)=-4 a(4-2 b+c)=6 \\
&-16 a+8 a b-4 a c=6
\end{aligned}
$$

wets 90 horizontal Langents route.

$$
\begin{array}{r}
y^{\prime}=3 a(x-2)(x+2) \quad(4=0(x= \pm 2) \\
=3 a\left(x^{2}-4\right) \\
=3 a x^{2}-12 a=3 a x^{2}+2 b x+c \\
\Rightarrow b=0 \quad d c=-12 a \quad \\
\Rightarrow y=a x^{3}-12 a x+d \\
y(2)=0 \Rightarrow \quad 8 a-24 a+d=0 \\
-16 a+d=0 \\
-16 a=-d \\
\Rightarrow d=\frac{1}{16} d \\
y(-2)=6 \Rightarrow \frac{1}{16} d(-2)^{3}-12\left(\frac{1}{16} d\right)+d=6 \\
\quad-\frac{1}{2} d-\frac{3}{4} d+d=6 \\
\quad-2 d-3 d+4 d=24 \\
\quad d=24 \\
d=-24 \\
a=\frac{1}{16} \cdot 24=\frac{3}{2}
\end{array}
$$

