41.

$a=f, b=f^{\prime}, c=f^{\prime \prime}$. We can see this because where a has a horizontal tangent, $b=0$, and where b has a horizontal tangent, $c=0$. We can immediately see that c can be neither f nor f^{\prime}, since at the points where c has a horizontal tangent, neither a nor b is equal to 0 .
43.

We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent, neither c nor b is equal to 0 . Next, we note that $a=0$ at the point where b has a horizontal tangent, so b must be the graph of the velocity function, and hence, $b^{\prime}=a$. We conclude that c is the graph of the position function.
42. The figure shows graphs of $f, f^{\prime}, f^{\prime \prime}$, and $f^{\prime \prime \prime}$. Identify each curve, and explain your choices.

43. The figure shows the graphs of three functions. One is the position function of a car, one is the velocity of the car, and one is its acceleration. Identify each curve, and explain your choices.

