$201 \quad S^{11} 7$

uso graph to fiad f conrespon drig to $\bar{\varepsilon}=0.2$
Want $\delta O 0<|x-1|<f$

Let $\frac{\delta}{\text { kup }}=0.1$ \& $0 . q<x<1$
$|f(x)-1|<q=.2$
2 Want digk $3 \quad A=x^{2}=10000$
(a) Madius is found by soluniby

$$
\begin{aligned}
& \pi x^{2}=1000 \\
& x^{2}=\frac{1000}{7} \\
& x= \pm \frac{10 \sqrt{10}}{\sqrt{\pi}} \text { or } \frac{10 \sqrt{10 \pi}}{\pi}
\end{aligned}
$$

Ditidne mogatme.
6) If eMor is to bo withu $+50 m^{2}$ pf 1000om New close to $\frac{10 \sqrt{10 \pi}}{\sqrt{~}}$ must the cadius bo? Wand $\left|x^{2}-1000\right|<5=$
$-5<\pi x^{2}-100005=$ $995<\pi x^{2}<1008$

HO U \& 1.7
2 dented

$$
\begin{aligned}
& \Rightarrow \frac{995}{\pi}<x^{2}<\frac{1005}{\pi} \\
& \Rightarrow \sqrt{\frac{995}{\pi}}<x<\sqrt{\frac{1005}{\pi}} \\
& \Rightarrow \sqrt{\frac{995}{\pi}}-\frac{10 \sqrt{10 \pi}}{\pi}<x-\frac{10 \sqrt{10 \pi}}{\pi}<\frac{\sqrt{1005}}{\pi}-\frac{10 \sqrt{105}}{\pi}
\end{aligned}
$$

Pick the sales in absolute valno of

$$
\begin{aligned}
& \frac{\sqrt{1005 \pi}}{\pi}-\frac{10 \sqrt{10 \pi}}{\pi} / \approx \\
& \frac{\text { and }}{\pi} 1 \approx .044547488 \\
& \frac{\sqrt{995}}{\pi}-\frac{10 \sqrt{10 \pi}}{\pi} 1 \sim
\end{aligned}
$$

$.044547488=\delta$ is small mong tobeioned to kelp area with in Scm^{2} of desire $1000 \mathrm{~cm}^{2}$. 4 ($4-4 x)=13 \begin{aligned} & \text { \#3 got stuck at the end. Retro-fit. And don't you pull } \\ & \text { that on your homework. }\end{aligned}$ $\lim _{x \rightarrow-3}(1-4 x)=13 \quad \begin{aligned} & \text { th got stuck at the end. } \\ & \text { that on your homework. }\end{aligned}$
Pg Let $q>0$ be gwen. Def ore $f=\frac{\varepsilon}{4}$. Then, if $0<|x+3|<f$, we have $|(1-4 x)-13|$

$$
=|-12-4 x|=|1 x+12|=4|x+9|<48=4 \frac{\varepsilon}{4}=\varepsilon
$$

20181,7
$5 \lim _{x \rightarrow-2}(3 x+5)=-1$
PD
Let $\varepsilon>0$ be given, De fins $f=\frac{\varepsilon}{3}$. Then, if
$0<|x+2|<f$, we have $|3 x+5-(-1)|$

$$
=|3 x+6|=3|x+2|<3 \delta=3 \frac{\varepsilon}{3}=\varepsilon
$$

$\left(6 \lim _{x \rightarrow 2}\left(x^{2}-4 x+5\right)=1\right.$
Scratch
$P B$ Let $q>0$ b
$\left|x^{2}-4 x+5-1\right|-<\varepsilon$ given Define $f=\sqrt{\varepsilon}$.

$$
\begin{aligned}
& \left|x^{2}-4 x+4\right|<\varepsilon \\
& |x-2|^{2}<\varepsilon \\
& |x-2|<\sqrt{\varepsilon} \\
& \delta=\sqrt{\varepsilon} \text { works }
\end{aligned}
$$

Then, if $0<|x-R|<\delta$,
we have

$$
\begin{aligned}
& \left|x^{2}-4 x+5-1\right|=\left|x^{2}-4 x+4\right| \\
= & |x-2|^{2}<\delta^{2}=(\sqrt{\varepsilon})^{2}=\varepsilon
\end{aligned}
$$

201517
$7 \lim _{x \rightarrow 3} x^{3}=8$ is the chain.
Scratch

$$
x^{3}-8=x^{3}-2^{2}=(x-2)\left(x^{2}+2 x+4\right)
$$

is gonna be $<\int\left(x^{2}+2 x+4\right)$, so we
need a handle on $x^{2}+2 x+4$.
Quick pis of $x^{2}+2 x+4=x^{2}+2 x+1-1+4$

$$
\begin{aligned}
& =(x+1)^{2}+3 \\
& (h, k)=(-1,3)
\end{aligned}
$$

Whin in terested w the vieimity of $x=3$. Assuming $\delta \leq 1$, we have
interchangeably. I'm attaching lecture notes with limit as x approaches 3 version of this, to the end of this document, and you should do limit as x
$2<x<4$ whenever

$$
|x-3|<1
$$

Since $x^{2}+2 x+4$ is in creasing we see the biggest it can get. is $4^{2}+2(4)+4$, when $x=4$, ire.

$$
2<x<4 \Rightarrow\left|x^{2}+2 x+4\right|<28 \text {. Now }
$$

Write proof?
$201 S^{2} 1,7$
PR 32
Proof Let $a>0$ be given, Define $\delta=\min \left\{1, \frac{8}{28}\right\}$. Then any time
we have $0<|x-3|<\delta$, we will al so have $\left|x^{3}-8\right|=|x-2|\left|x^{2}+2 x+4\right|$

$$
<\left|x^{2}+2 x+4\right| \delta<28 \delta \leq 28 \cdot \frac{\varepsilon}{28}=\varepsilon
$$

$$
20151,7
$$

(8.) $\lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}$ is tho clam.

Senatch want $|\sqrt{x}-\sqrt{2}|<\varepsilon$

$$
\Rightarrow \frac{\operatorname{senatch}}{\Rightarrow \ln -\sqrt{a}} \left\lvert\,\left(-\frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\right)=\frac{|\sqrt{x}-a|}{\sqrt{x}+\sqrt{a}}<\frac{8}{\sqrt{x}+\sqrt{2}}\right.
$$

want that $<q$.
want a sting of " $=$ " and " <1 "
ending with " $\angle \varepsilon^{\prime \prime}$, HAmm mo

Proof Let $a>0$ be given. Define $f=\varepsilon \sqrt{2}$
Then if $0<|x-a|<(\varepsilon)$ we have Should be delta.

$$
\begin{aligned}
|\sqrt{x}-\sqrt{a}| & =\frac{|x-a|}{\sqrt{x}+\sqrt{a}}<\frac{|x-a|}{\sqrt{a}}<\frac{\delta}{\sqrt{a}}=\frac{6 \sqrt{a}}{\sqrt{a}} \\
-6 & \text { Since square root of } x \text { is positive, we're making the denominator }
\end{aligned}
$$

$$
=\varepsilon \operatorname{sen}
$$ a little smaller, which makes the fraction a little bigger, so the one on the left is smaller than the one on the right.

201 \& W \#
(3) Temparature T is a function of powet; w, given by $T=T(w)=0.1 \omega^{2}+2.155 \omega+20$.
Units T: degrees Celsnes

$$
w: w_{a} t_{s}
$$

(a) How muck pouer to maistain Lemp
(a) $200^{\circ} \mathrm{C}$

$$
\begin{aligned}
& T=200 \\
& 11 w^{2}+2.155 w+20=200 \longrightarrow \\
& -1 w^{2}+2.185 w-180=0 \\
& 100 \omega^{2}+2155 \omega+180000=0 \\
& b^{2}-4 a c=255^{2}-4(100)(-180000) \\
& =76644025 \rightarrow \\
& x=\frac{-b \pm \sqrt{b^{2} 4 a c}}{2 a}=\frac{2055 \pm \sqrt{76644025}}{2(100)} \\
& \approx 32.9982867 \text { Watts Drscand megatre }
\end{aligned}
$$

So lets call it 32 for the squel 32.00 in Pact 2

The othe solim is -54.5482807 Call. $7-54.55$, forpractizal...

201 SM 1 *3
(3) cancel
(b) Kemp is allowed to vary as much as $\pm 1^{\circ} \mathrm{C}$. What's the range is wattage (power) allowed them?

Want $|T-200|<1$
By Previous Work,

$$
\begin{aligned}
&|T-200| \approx|(w-33.00)(w+54.55)| \\
&= \underbrace{|w-33.00|}_{\substack{\text { Want } \\
\text { to know how }}}|w+54.55|<1 \\
& T_{\text {our goal }}
\end{aligned}
$$

big this can
be

So it's a questron of how bit $1+54.551$ Can be! Let's assume \mid ut- $33.00 \mid<1$ (will be at LEAst that close to 33 watts)
Then $32<\omega<34$ and so

$$
32+54.55<w+54.55<34+54.55
$$

and sow $+54.55<88.55$ USE this

201 Silt 3
(3) cuticle

$$
\begin{aligned}
& |w+54.55|<\frac{88.55}{}> \\
& |w-33.00| 1+54.55|<|w-33|(89 \mid
\end{aligned}
$$

So $(89)|w-33|<1 \longrightarrow$

$$
|w-33|<\frac{1}{89} .
$$

This says, to keep W between $33-\frac{1}{89}$ and $33+\frac{1}{89}$
Notice 1 rounded the 88.55 up. This was a conservative move. Making
$|w-33| 1 w+88.551$ a little binge:
$|w-33||w+g q|$ made us keep
1 w-s31 a lith smaller, to satisfy $|w-33| 1 w+89 \mid<1$

