201 51,7

そう び ごう 2 Intic - V 995 2 X 6 V 10.05 $\frac{1}{17} = \frac{10\sqrt{1017}}{17} + \frac{10\sqrt{1017}}{17} +$ Pick the smalles in absolute value of $\left| \frac{V_{100STT}}{TT} - \frac{10V_{10TT}}{TT} \right| \approx \left(\frac{0044547488}{0044547488} \right)$ and ,0446589966 1 1995 TT 10 100 12

.044547488 = 5 is small mough tolerance to keep area with in Sam² of desired 1000 cm² to keep area with in Sam² of desired 1000 cm² that on your homework. (1) find (i-4x) = 13 that on your homework. (1) find (i-4x) = 13 that on your homework. (1) for the first of the given. Define $f = \frac{2}{4}$. Then, if $0 \le |x + 3| \le 5$, we have 1(-4x) = 13= [-12 - 4x] = [1+x+12] = 4[x+3] < 4 = 4 = 4 = 2

201 81,7
5 l_{1} $(3 \times +5) = -1$ $\times 3 - 2$ $(3 \times +5) = -1$
PP
PP Let E20 be green, Defins $F = \frac{E}{3} - Then, if$
0 < 1x+21 < S, we have 13x+5-(-1)1
$= 3x+6 = 3(x+2) < 3\xi = 3\frac{\xi}{3} = \xi \frac{\xi}{3}$
$ \int_{X \to 2}^{6} h_{X} \left(\chi^{2} + \chi + 5 \right) = 1 $
SCRATCHE PP Let 2>0 b
1x=4x+5-11-48 green Define f= VE.
[x2=4x+4/~~ Then, if o × k-2/~ g,
1x-212 < E we have
$ x-2 < \sqrt{2}$ $ x^{2-4}x+5-1 = 1x^{2-4}x+4 $
$S = V \in W \circ r K S = 1 \times -21^2 < S^2 = (r \in)^2 \in \mathbb{Z}$

201
$$5^{4}$$
,7

$$find x^{3} = 8 is two claim.$$
Scratch
 $x = 8 = x^{2} - 2^{2} = (x - 2)(x^{2} + 2x + 4)$
is gonmable $\leq 5(x^{2} + 2x + 4)$, so we
need a handle on $x^{2} + 2x + 4$.
Quick pix of $x^{2} + 2x + 4 = x^{2} + 2x + 1 - 1 + 4$
 $find (x + 1)^{2} + 3$
 $(b, K) = (-1, 3)$
Were interested in
 $+ 4w$ virinity of $x = 3$.
This is all messed up, because 1 contused a 3
with a 2' and used one then the other,
neechangeably. In attaching lecture notes with
interesting of the endown
 $2 + 2x + 4$ when view
 $2 + 2x + 4 = 1$
 $(x + 1)^{2} + 3$
 $(b, K) = (-1, 3)$
Were interested in
 $x + 2x + 4$ when view
 $2 + 2x + 4$ when view
 $2 + 2x + 4$ when view
 $3 + 2x + 4$ when $x = 4$, i.e.
 $2 + 2x + 4$ is in crossing we see the biggest
if can get is $4^{2} + 2x + 4 = 1x^{2} + 2x + 4 = 28$. Now
 W_{n} , the proof 1

201 8117 ** (PP) (32) Proof Let 2>0 be given, Define S=ming1, 285. Then any time we have oc 1x-31 < S, we will also have $|x^3-8| = |x-2||x^2+2x+4|$ $< |x^{2}+2x+4| \leq 28 \leq 28 \cdot \frac{2}{28} = 28$

201 847 #3 3 Temperature T is a function of power, W, given by T= T(w)= 0,1 w2 + 2,1556 +20. Units & T: degrees Celsnes w " watts-(a) How much power to main tain temp @ 200°C? T=200 olw2 +2.155 W +20 =200 ---> .1 w2+2.155 w -180=0 100 W2 +2155 W + 180,000 =0 62-42C = 21552 -4 (100) (-180000). = 76644025 ----7 X= -b= x 63-42C = 2155 = V =26644025 2(100) 232.9982867 Watts Discard negative answer So let's call it 32 for the squel 32.00, in Fact The other solim is -54.5482807 Call, 7 -54.55, for practical.

201
$$5'1.7 #3$$

3) $cutid$
 $1w+54.551 < 88.55 - 7$
 $1w-33.0011 + 54.551 < 1w-33 | (89)$
So $(9) | w-331 < 1 = 7$
 $[w-331 < \frac{1}{59}.$
This says, to keep w between
 $33-\frac{1}{59}$ and $33+\frac{1}{59}$
Notice I nounded the \$8.55 wp. This
was a conservative more. Making
 $1w-331 | w+88.551 = 1; #6 bygen:$
 $1w-331 | w+88.551 = 1; #6 bygen:$
 $1w-331 | w+891 = 1$