20151,4
The most useful one al these is the LAST one, beginning $O t=2$, enchisg $t=2.01$. heft alone, Ind just plug ü 2.001. $\left(t_{1}, y_{1}\right)=(2,16)$

$$
y(2)=-16(2)^{2}+40(2)=-16(4)+80=-64+80=16
$$

$$
\left(t_{2}, y_{2}\right)=(2.001
$$

$$
f(t)=-16 t^{2}+40 t
$$

My guess is it's
trending to -24 .
Check $f^{\prime}(t)=-32 t+40$

$$
\begin{aligned}
& \prime(t)=-32 t+40 \Longrightarrow \\
& f(2)=-32(2)+40=-64+40=-24 \text { exact }
\end{aligned}
$$

$$
\begin{aligned}
& f(2,001)=-16(2,001)^{2}+40(2,001) \\
& (2+.001)^{2}=2^{2}+2(2)(0001)+(0001)^{2} \\
& =4+.004+.0000 .01=4.004001 \\
& (1001)^{2}=\left(10^{-3}\right)^{2}=10^{-6}=.000001 \\
& D=-16(4,004001)+40(2.001) \\
& =-64.064016+80.04=15.975984 \\
& \therefore \frac{4_{2}-y_{1}}{t_{2}-t_{1}}=\frac{15.975984-16}{2.001-2}=\frac{-024016}{.001} \\
& =-24.016
\end{aligned}
$$

$201 S 1.4$
This is one where it's easy to be deceived, especially $\Omega x=0$. But it's sAl oscillating rapidly enough at $x=1$ for $x=1,5,1,4,13$, and so pot, to jump arouse. IF the limit exists $9 x_{1}=1$, then START with $x_{2}=1.001$ or $x_{2}=0.999$, and come from night from left
at it from both directions.
(a) They Mont appear to approach a Dim ito
(b) We demoed this in class, showing how fan aport the secant lines were for the (stupid) choices given to us.
(c) In $x=2,0001$?

$$
\begin{aligned}
& \frac{f(1.0001)-f(1)}{.0001} \approx=31.41905675 \\
& \frac{f(0.9999)-f(1)}{-.0001} \approx \\
& x_{2}=1.9999999 \Longrightarrow \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \approx 34.41592654
\end{aligned}
$$

is what I'm guessing is the timitoo the slope of the secant line. $\rho \cap \ldots 11 \ldots 2141592654$

I never did quite finish this 1.4 \#2 problem. Let's do some computer algebra and see what we have here:

Define the function.
$f:=x \rightarrow \sin \left(\frac{10 \cdot \mathrm{Pi}}{x}\right)$

$$
\begin{equation*}
x \rightarrow \sin \left(\frac{10 \pi}{x}\right) \tag{1}
\end{equation*}
$$

Define the slope of the secant line ("ss" for "secant slope," below:)
$s s:=x \rightarrow \frac{(f(x)-f(1))}{x-1}$

$$
\begin{equation*}
x \rightarrow \frac{f(x)-f(1)}{x-1} \tag{2}
\end{equation*}
$$

So the secant slope function looks like this :
$s s(x)$

$$
\begin{equation*}
\frac{\sin \left(\frac{10 \pi}{x}\right)}{x-1} \tag{3}
\end{equation*}
$$

Computer algebra system can do the limit, directly, which is nice. At this point, all we have is a numerical sledgehammer to find the limit:
$\operatorname{bint}(s s(x), x=1)$

$$
\begin{equation*}
-10 \pi \tag{4}
\end{equation*}
$$

No way the numerical approach gives you a nice, symbolic - 10π. But if you're persistent, enough, you'd come pretty darn close to the following digital answer:

And this last, digital answer is the answer to the final part of \#2 that got cut off the bottom of the solutions page.

evalf (\%)

