, $\$ 1,2$
la Erin for family of kinas himation- some with slope $m_{2}=2$ of sketch come $y=2 x+b, b \in \mathbb{R}$

ib Eqion for family of limes $7 f(2)=1$ o sketch some.

$$
\begin{aligned}
& f(x)=2(x-2)+1 \\
& f(x)=2 x-3
\end{aligned}
$$

2 All members 20 the $f(x)=a-x$ families have elope $m=-1$. sketch som.

$201 \quad \$ 1,2$
3 in class. Fid d a cubit func $\partial f(1)=6$ and

$$
f(-1)=f(0)=f(2)=0
$$

(mi Cubic: $f(x)=a x^{3}+b x^{2}+c x+c$
Method 1: Brute Force. I suggest you look at Method 2, as well, because it's so slick. But this 1st method shows how one might methodically use the points given to derive a system of linear equations and solve for the coefficients of the cubic function in question.

$$
\begin{aligned}
& f(-1)=0 \longrightarrow \\
& a(-1)^{3}+b(-1)^{2}+c(-1)+c=0=0 \\
& E 2-a+b-c+c=0 \\
& f(0)=0 \Longrightarrow \\
& a(0)^{3}+b(0)^{2}+c(0)+c=0
\end{aligned}
$$

$d=0$ means we cam drop dy in all the egims.

$$
\begin{aligned}
& A(2)=0 \longrightarrow \\
& a(2)^{3}+b(2)^{2}+c(2)+d=0 \longrightarrow
\end{aligned}
$$

Es $8 a+4 b+2 c+d=0$
Now drop d q at rolling"
$E 1 a+b+c=6$ (Back- \sin (G) end)

$$
\left.\begin{aligned}
& E 1 \quad a+b+c=6 \quad \text { (Back-Subg} \text { (and } \\
& E 2-a+b-c=0
\end{aligned} \quad b=a+c \right\rvert\, \text { Sand this to E) E EZ }
$$

$$
E_{2}-a+1+b+2 c=0
$$

$$
\begin{aligned}
& 8 a+4 b+2 c=0 \\
& E+a+(a+c)+c=6-2 a+2 c=6
\end{aligned}
$$

$$
\begin{aligned}
& E \prime ; a+8,4(a+c)+2 c-0 \\
& E z ; 3+b a=
\end{aligned}
$$

$$
\begin{gathered}
E=3+4 a+4 c+2 c-12 a+69= \\
b a+5=
\end{gathered}
$$

2018182
3 anted. New 2×2 vystami
Et $\quad 2 a+2 c=6 \quad$ eq $a+c=3$
ES $12 a+6 a=0$
Es $2 a+c=0$
ES, $2 a+c=0$ mat
use for
back-sub.

$$
\begin{gathered}
2(3-c)+c=0 \\
6-2 c+c=0 \\
-c=-6 \\
c=+6
\end{gathered}
$$

Back-Sub: $a=3-c=3-6=-3=a$

$$
b=a+c=-3+6=3=b
$$

So, $f(x)=-3 x^{3}+3 x^{2}+6 x \quad \in$
M2) Use the zeros to mute factors

$$
\begin{aligned}
& f(-1)=f(0)=P(2)<0 \\
& f(x)=a(x+1)(x)(x-2)
\end{aligned}
$$ the durn thing in factored form. The only coefficient we need to worry about is the leading coefficient.

Now, $P(1)=6$ gaMes

$$
\begin{aligned}
& f(1)=a(2)(1)(-1)=6 \longrightarrow \\
&-2 a=6 \rightarrow+ \\
& a=-3 \rightarrow(f(x)=-3 x(x+1)(x-2)
\end{aligned}
$$

201 S1.2
${ }^{3}$ cental
I lied Ambents elnariation method and I showed you the matrix (Gaus-Tordan) method in classFahmoheit of Celsius ane noted by, tho limen function $F=\frac{2}{5} c+32$
(a) Sketch

(b) Slope of gat is $\frac{9}{5}$. $t+$ means Fahrenheit temp ineneaus by $\frac{9}{5}$ degrees whenever Celsius àcneases by 1 degree. Tho Fintancept is 6,92$)$ and it moneponcts to $0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$.

I don't like the way I wrote this last bit, at all. $0^{\circ} \mathrm{C}$ does not "equal" $32^{\circ} \mathrm{F}$. They correspond to one another via the conversion formula given. To say they're equal is like saying a dog is 2 cups of food because that's what he is fed. He's not 2 cups of food, but 2 cups of food goes to/with that dog.

