\#s 1-3: Verify that the hypotheses of Rolle's Theorem (Cnt ${ }^{-5}$ on closed interval and Difb ${ }^{1}$ on open interval) are satisfied and then find the c that Rolle's says will be there. If the hypo's are not satisfied, then you're done, by explaining why it doesn't satisfy Rolle's. Also, there may be more than one c.

1. $f(x)=3 x^{2}-12 x+5$ on $[1,3]$.
2. $f(x)=\sqrt{x}-\frac{1}{3} x$ on $[0,9]$.
3. $f(x)=1-x^{\frac{2}{3}}$ on $[-1,1]$.
\#s 4, 5: Same instructions, only this time, it's the Mean Value Theorem, which loosens up the "must be equal" condition at the endpoints. MVT is really just a generalization of Rolle's.
4. $f(x)=2 x^{2}-3 x+1$ on $[0,2]$.
5. $f(x)=\sqrt[3]{x}$ on $[0,1]$.
6. Show that $(x-3)^{-2}$ does not yield a c in $(1,4)$ such that $f^{\prime}(c)=m_{\text {avg }}=\frac{f(b)-f(a)}{b-a}$ on the interval. Why does this not violate the Mean Value Theorem?

An alternate statement of the MVT conclusion is " $\ldots c$ such that $f^{\prime}(c)(b-a)=f(b)-f(a)$." This alternate amounts to just multiplying both sides of the original by $(b-a)$. I think the first way relates to slopes and you can draw the picture. This second way is saying you can find the Net Change in wellbehaved function by multiplying a particular value of the derivative by the width of the interval.
7. Show that $f(x)=2 x+\cos (x)$ has exactly one root in the interval $[-2,2]$.
8. Show that the equation $x^{3}-15 x+c=0$ has exactly one root, regardless of the value of c.
9. Does there exist a function f such that $f(0)=-1, f(2)=4$, and $f^{\prime}(x) \leq 2$ for all x ?
10. Show that $\sqrt{x+1}<1+\frac{1}{2} x$ if $x>0$. (Hint: Consider the function $f(x)=\sqrt{x+1}-1-\frac{1}{2} x$. Analyze its derivative.)

