\#s 1, 2: Find the linearization at a.

1. $f(x)=x^{4}+3 x^{2} @ a=1$
2. $f(x)=\sqrt{x} @ a=4$
3. Use $g(x)=\sqrt{x+1} @ a=0$ to approximate $\sqrt{1.1}$ and $\sqrt{.95}$.
\#s 4-7: Find the differential of each function.
4. $y=x^{2} \sin (2 x)$
5. $y=\sqrt{1+t^{2}}$
6. $y=\frac{s}{2 s+1}$
7. $y=u \cos (u)$
8. For the function $f(x)=-x^{2}+2 x$, compute Δy and $d y$ for $x=2$ and $\Delta x=-.4$. Then draw a picture illustrating the lengths of the line segments $d y, \Delta y$, and Δx.
\#s 9, 10: Use a linear approximation (or "the linearization") to estimate the following.
9. $(1.999)^{4}$
10. $\frac{1}{4.002}$
11. The measured edge of a cube is 30 cm , with an error of $\pm .1 \mathrm{~cm}$. Use differentials to estimate the maximum error, relative error and percentage error in the resulting calculations of ...
a. ... volume; and,
b. surface area.
12. Use differentials to estimate the amount of paint needed to apply a coat of paint that is .05 cm thick to a hemispherical dome of diameter 50 m .
13. Consider a thin, cylindrical shell of inner radius r, height h, and thickness Δr.
a. Estimate the volume of the shell with a differential.
b. What's the error in using a differential?
