- #s 1, 2: Find the linearization at a.
 - 1. $f(x) = x^4 + 3x^2$ @ a = 12. $f(x) = \sqrt{x}$ @ a = 4
 - 3. Use $g(x) = \sqrt{x+1}$ @ a = 0 to approximate $\sqrt{1.1}$ and $\sqrt{.95}$.
- #s 4-7: Find the differential of each function.
 - 4. $y = x^{2} \sin(2x)$ 5. $y = \sqrt{1 + t^{2}}$ 6. $y = \frac{s}{2s + 1}$ 7. $y = u \cos(u)$
 - 8. For the function $f(x) = -x^2 + 2x$, compute Δy and dy for x = 2 and $\Delta x = -.4$. Then draw a picture illustrating the lengths of the line segments $dy, \Delta y$, and Δx .
- #s 9, 10: Use a linear approximation (or "the linearization") to estimate the following.
 - 9. $(1.999)^4$ 10. $\frac{1}{4.002}$
 - 11. The measured edge of a cube is 30 cm, with an error of $\pm .1$ cm. Use differentials to estimate the maximum error, relative error and percentage error in the resulting calculations of ...
 - a. ... volume; and, b. surface area.
 - 12. Use differentials to estimate the amount of paint needed to apply a coat of paint that is .05 cm thick to a hemispherical dome of diameter 50 m.
 - 13. Consider a thin, cylindrical shell of inner radius r, height h, and thickness Δr .
 - a. Estimate the volume of the shell with a differential.
 - b. What's the error in using a differential?