\#s 1,2 (a) Find y^{\prime} by implicit differentiation.
(b) Solve the equation explicitly for y and differentiate to get y^{\prime} in terms of x.
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

1. $9 x^{2}-y^{2}=1$
2. $\frac{1}{x}+\frac{1}{y}=1$
\#s 3-11: Find $\frac{d y}{d x}=y^{\prime}$ by implicit differentiation.
3. $x^{3}+y^{3}=1$
4. $4 \cos x \sin y=1$
5. $y \cos x=1+\sin (x y)$
6. $x^{2}+x y-y^{2}=4$
7. $x^{4}(x+y)=y^{2}(3 x-y)$
8. $\tan \left(\frac{x}{y}\right)=x+y$
9. $y \cos x=x^{2}+y^{2}$
10. $\sqrt{x y}=1+x^{2} y$
11. If $f(x)+x^{2}[f(x)]^{3}=10$ and $f(1)=2$, find $f^{\prime}(1)$.
12. Regard y as the independent variable and x as the dependent variable, and use implicit differentiation to find $\frac{d x}{d y}$, if x and y are related by the equation $x^{4} y^{2}-x^{3} y+2 x y^{3}=0$
\#s 14, 15: Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
13. $y \sin (2 x)=x \cos (2 y) @\left(\frac{\pi}{2}, \frac{\pi}{4}\right)$.
14. $x^{2}+x y+y^{2}=3 @(1,1)$ (ellipse)
15. Find an equation of the tangent line to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 @\left(x_{0}, y_{0}\right)$.
16. Show, using implicit differentiation, that any tanget line to the circle at a point P on the circle, with center O, is going to be perpendicular to the radius $O P$.
