\#s 1, 2: Find an equation of the tangent line to the curve at the given point.

1. $y=\frac{2 x}{x+1} @(1,1)$
2. $y=x^{4}+2 x^{2}-x @(1,2)$
\#s 3, 4: Find an equation of the tangent line and the normal.
3. $y=x+\sqrt{x} @(1,2)$
4. $y=\frac{3 x+1}{x^{2}+1} @(1,2)$
5. Find the first and second derivatives of $f(x)=x^{4}-3 x^{3}+16 x$
6. The equation of motion for a particle is $s=t^{3}-3 t$, where s is measured in meters and t is measured in seconds.
a. Find the velocity and acceleration functions, you jerk!
b. How fast is it accelerating after one second?
c. Graph the 3 functions on the same set of axes.
7. Show that $y=6 x^{3}+5 x-3$ has no tangent line with a slope of $m=4$.
8. Find an equation of a normal line to the parabola $y=x^{2}-5 x+4$ that's parallel to the line $x-3 y=5$
9. Suppose $f(5)=1, f^{\prime}(5)=6, g(5)=-3$ and $g^{\prime}(5)=2$. Use these facts to evaluate the following:
a. $(f g)^{\prime}(5)$
b. $\left(\frac{f}{g}\right)^{\prime}(5)$
c. $\left(\frac{g}{f}\right)^{\prime}$
10. If $f(x)=\sqrt{x} g(x), g(4)=8$ and $g^{\prime}(4)=7$, find $f^{\prime}(4)$.
11. Find a cubic function $f(x)=a x^{3}+b x^{2}+c x+d$ that has a horizontal tangent @ $(-2,6)$ and $(2,0)$.
