1. Given that

$$
\lim _{x \rightarrow 2} f(x)=4 \quad \lim _{x \rightarrow 2} g(x)=-2 \quad \lim _{x \rightarrow 2} h(x)=0
$$

find the limits that exist. If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow 2}[f(x)+5 g(x)]$
(b) $\lim _{x \rightarrow 2}[g(x)]^{3}$
(c) $\lim _{x \rightarrow 2} \sqrt{f(x)}$
(d) $\lim _{x \rightarrow 2} \frac{3 f(x)}{g(x)}$
(e) $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$
(f) $\lim _{x \rightarrow 2} \frac{g(x) h(x)}{f(x)}$
2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a) $\lim _{x \rightarrow 2}[f(x)+g(x)]$
(b) $\lim _{x \rightarrow 1}[f(x)+g(x)]$
(c) $\lim _{x \rightarrow 0}[f(x) g(x)]$
(d) $\lim _{x \rightarrow-1} \frac{f(x)}{g(x)}$
(e) $\lim _{x \rightarrow 2}\left[x^{3} f(x)\right]$
(f) $\lim _{x \rightarrow 1} \sqrt{3+f(x)}$
\#s 3, 4 Evaluate the limit and justify each step by using the appropriate limit laws. This sort of exercise is obligatory, although of relatively limited value, in my eyes. Your intuition is a great guide: You want to be able to move the limit operator over/through/across the various arithmetic operations, and you basically can. The thing to focus on before you do such a move, is whether the two parts (like the two members in a sum) both have limits, separately? If so, the "limit of the sum is the sum of the limits." In place of the word "sum," you can put "product, power, root, quotient, etc.
3. $\lim _{t \rightarrow-2} \frac{t^{4}-2}{2 t^{2}-3 t+2}$
4. $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}}$
5. (a) What is wrong with the following equation?

$$
\frac{x^{2}+x-6}{x-2}=x+3
$$

(b) In view of part (a), explain why the equation

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\lim _{x \rightarrow 2}(x+3)
$$

is correct.
\#s 6-10 Evaluate the limit, if it exists. If it doesn't, explain why.
A careless student will factor this wrong.
6. $\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}$
7. $\lim _{x \rightarrow 5} \frac{x^{2}-5 x+6}{x-5}$
8. $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}$
9. $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$ Rationalize the numerator!
10. $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$

Tangent slope function for a cubic!
11. Prove that $\lim _{x \rightarrow 0} x^{4} \cos \frac{2}{x}=0$. Squeeze it!
\#s 12-14 Find the limit, if it exists. If it doesn't exist, explain why.
12. $\lim _{x \rightarrow 0.5^{-}} \frac{2 x-1}{\left|2 x^{3}-x^{2}\right|}$
13. $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$
14. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$

Requires a sign pattern on what's inside the In the theory of relativity, the Lorentz contraction formula
absolute value!
15. Let $g(x)=\frac{x^{2}+x-6}{|x-2|}$.
(a) Find
(i) $\lim _{x \rightarrow 2^{+}} g(x)$
(ii) $\lim _{x \rightarrow 2^{-}} g(x)$
(b) Does $\lim _{x \rightarrow 2} g(x)$ exist?
(c) Sketch the graph of g.
16. $L=L_{0} \sqrt{1-v^{2} / c^{2}}$
expresses the length L of an object as a function of its velocity v with respect to an observer, where L_{0} is the length of the object at rest and c is the speed of light. Find $\lim _{\Delta \rightarrow c^{-}} L$ and interpret the result. Why is a left-hand limit necessary?
Math modeling question
18. Is there a number a such that

$$
\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}
$$

exists? If so, find the value of a and the value of the limit.
So the denominator goes to zero as x approaches -2 , right? Somehow, you need the same from the numerator, or the limit will be a division by zero.

