MAT 201

Section 1.5 questions

- 1. Explain what is meant by $\lim_{x\to 2} f(x) = 5$. Is it possible for this statement to be true and f(2) = 3?
- 2. Explain the meaning of
 - a. $\lim_{x \to 1^{-}} f(x) = 3$ b. $\lim_{x \to 1^{+}} f(x) = 7$

In this situation, is it possible that $\lim_{x\to 1} f(x)$ exists?

- 3. For the function, *f*, whose graph is given on the right, state the value of each quantity, if it exists. If it doesn't exist, state why.
 - (a) $\lim_{x \to 1} f(x)$ (b) $\lim_{x \to 3^{-}} f(x)$ (c) $\lim_{x \to 3^{+}} f(x)$ (d) $\lim_{x \to 3} f(x)$ (e) f(3)
- 4. For the function, *h*, whose graph is given on the right, state the value of each quantity, if it exists. If it doesn't exist, state why.

(a)
$$\lim_{x \to -3^{-}} h(x)$$
 (b) $\lim_{x \to -3^{+}} h(x)$ (c) $\lim_{x \to -3} h(x)$
(d) $h(-3)$ (e) $\lim_{x \to 0^{-}} h(x)$ (f) $\lim_{x \to 0^{+}} h(x)$
(g) $\lim_{x \to 0} h(x)$ (h) $h(0)$ (i) $\lim_{x \to 2} h(x)$
(j) $h(2)$ (k) $\lim_{x \to 0^{+}} h(x)$ (l) $\lim_{x \to 0^{+}} h(x)$

5. For the function, g, whose graph is given on the right, state the value of each quantity, if it exists. If it doesn't exist, state why.

(a) $\lim_{t\to 0^-} g(t)$	(b) $\lim_{t\to 0^+} g(t)$	(c) $\lim_{t\to 0} g(t)$
(d) $\lim_{t\to 2^-} g(t)$	(e) $\lim_{t\to 2^+} g(t)$	(f) $\lim_{t\to 2} g(t)$
(g) <i>g</i> (2)	(h) $\lim_{t \to 4} g(t)$	

6. Sketch the graph of the piecewise-defined function

$$f(x) = \begin{cases} x+1 & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 1 \\ -x+2 & \text{if } x \ge 1 \end{cases}$$

and use it to determine all real numbers, a, such that $\lim_{x \to a} f(x)$ exist.

7. Sketch the graph of a function that satisfies the given properties: $\lim_{x \to 0^-} f(x) = -1, \lim_{x \to 0^+} f(x) = 2, f(0) = 1$

#s 8 - 10 Guess the following limits by numerical methods. (Grapher can check.)

8.
$$\lim_{x \to 2} \frac{x^2 - 2x}{x^2 - x - 2}$$

9.
$$\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x}$$

10.
$$\lim_{x \to 1} \frac{x^6 - 1}{x^{10} - 1}$$

11. Graph and zoom, to determine the limit (if it exists). (Numerical methods can check.) $\lim_{x \to \infty} \frac{\cos(2x) - \cos(x)}{\cos(2x) - \cos(x)}$

$$\lim_{x \to 0} \frac{\cos(2x) - \cos(x)}{x^2}$$

#s Determine the infinite limits

- 12. $\lim_{x \to -3^+} \frac{x+2}{x+3}$
- 13. $\lim_{x \to 2\pi^-} x \csc(x)$
- 14. a. Find the vertical asymptotes of $f(x) = \frac{x^2 + 1}{3x 2x^2}$.
 - b. Confirm by graphing.