1. Explain what is meant by $\lim _{x \rightarrow 2} f(x)=5$. Is it possible for this statement to be true and $f(2)=3$?
2. Explain the meaning of
a. $\quad \lim _{x \rightarrow 1^{-}} f(x)=3$
b. $\quad \lim _{x \rightarrow 1^{+}} f(x)=7$

In this situation, is it possible that $\lim _{x \rightarrow 1} f(x)$ exists?
3. For the function, f, whose graph is given on the right, state the value of each quantity, if it exists. If it doesn't exist, state why.
(a) $\lim _{x \rightarrow 1} f(x)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$
(e) $f(3)$
4. For the function, h, whose graph is given on the right, state the value
 of each quantity, if it exists. If it doesn't exist, state why.
(a) $\lim _{x \rightarrow-3^{-}} h(x)$
(b) $\lim _{x \rightarrow-3^{+}} h(x)$
(c) $\lim _{x \rightarrow-3} h(x)$
(d) $h(-3)$
(e) $\lim _{x \rightarrow 0^{-}} h(x)$
(f) $\lim _{x \rightarrow 0^{+}} h(x)$
(g) $\lim _{x \rightarrow 0} h(x)$
(h) $h(0)$
(i) $\lim _{x \rightarrow 2} h(x)$
(j) $h(2)$
(k) $\lim _{x \rightarrow 5^{+}} h(x)$
(1) $\lim _{x \rightarrow 5^{-}} h(x)$

5. For the function, g, whose graph is given on the right, state the value of each quantity, if it exists. If it doesn't exist, state why.
(a) $\lim _{t \rightarrow 0^{-}} g(t)$
(b) $\lim _{t \rightarrow 0^{+}} g(t)$
(c) $\lim _{t \rightarrow 0} g(t)$
(d) $\lim _{t \rightarrow 2^{-}} g(t)$
(e) $\lim _{t \rightarrow 2^{+}} g(t)$
(f) $\lim _{t \rightarrow 2} g(t)$
(g) $g(2)$
(h) $\lim _{t \rightarrow 4} g(t)$
6. Sketch the graph of the piecewise-defined function

$f(x)=\left\{\begin{array}{cc}x+1 & \text { if } x<-1 \\ x^{2} & \text { if }-1 \leq x<1 \\ -x+2 & \text { if } x \geq 1\end{array}\right.$
and use it to determine all real numbers, a, such that $\lim _{x \rightarrow a} f(x)$ exist.
7. Sketch the graph of a function that satisfies the given properties: $\lim _{x \rightarrow 0^{-}} f(x)=-1, \lim _{x \rightarrow 0^{+}} f(x)=2, f(0)=1$
\#s 8 - 10 Guess the following limits by numerical methods. (Grapher can check.)
8. $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}-x-2}$
9. $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$
10. $\lim _{x \rightarrow 1} \frac{x^{6}-1}{x^{10}-1}$
11. Graph and zoom, to determine the limit (if it exists). (Numerical methods can check.) $\lim _{x \rightarrow 0} \frac{\cos (2 x)-\cos (x)}{x^{2}}$
\#s Determine the infinite limits
12. $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}$
13. $\lim _{x \rightarrow 2 \pi^{-}} x \csc (x)$
14. a. Find the vertical asymptotes of $f(x)=\frac{x^{2}+1}{3 x-2 x^{2}}$.
b. Confirm by graphing.

