1. If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height, h, in feet, is given by $h(t)=40 t-16 t^{2}$, where t is time, in seconds.
a. Find the average velocity for the time period beginning when $t=2$, and lasting
i. 0.5 seconds
ii. 0.1 seconds
iii. 0.05 seconds
iv. 0.01 seconds
b. Estimate the instantaneous velocity when $t=2$.
2. The point $P(1,0)$ lies on the curve $f(x)=\sin \left(\frac{10 \pi}{x}\right)$. Here, we explore what can happen, when the limit exists, but the function bounces around so much, it's hard to tell, until we get really close to the limiting value of $x=1$.
a. Build a secant function $m(x)=\frac{f(x)-f(1)}{x-1}$. Notice it is not defined at $x=1$. We're exploring
whether, like all smooth functions, it has a limit, as x approaches 1 . If you have a graphing calculator, or access to a grapher, such as this one:
http://dlippman.imathas.com/graphcalc/graphcalc.html,
you can work part (b) rather quickly!
b. If Q is the point $Q(x, f(x))$, find the slope of the secant line $P Q$ (correct to 4 decimal places) for $x=2,1.5,1.4,1.3,1.2,1.1,0.5,0.6,0.7,0.9$.
c. Use a grapher to render a graph of $f(x)$ and explain why the slopes of the secant lines in part (a) are not close to the slope of the tangent line at P.
d. By choosing appropriate values of x (sufficiently close to $x=1$), you should be able to estimate the slope of the curve at $x=1$.
\#2, above, illustrates one of the subtleties of limits. Your intuition is usually an excellent guide, but we want rules that work for all functions and all situations. The function in \#2 is a version of The Topologist's Sine Curve. Notice it is not defined at $x=0$. It also oscillates infinitely often on any neighborhood of $x=0$. It oscillates enough in the vicinity of $x=1$ to cause us some technical difficulties, there, as well.
