\#s 1 - 3: Graph the function, by hand, by transforming a basic function.

1. $y=\frac{1}{2}(1-\cos (x))$
2. $y=1-2 x-x^{2}$
3. $y=|\sqrt{x}-1|$
4. The graph of $f(x)$ is given, for $x \geq 0$.
a. Explain how the graph of $f(|x|)$ is obtained from the graph of $f(x)$.

Supply the graph of $f(|x|)$. Is $f(|x|)$ even, odd, or neither?
b. If $f(x)=\sin (x)$, what is $f(|x|)$? Give me a sketch of $f(|x|)$.
c. If $f(x)=\sqrt{x}$, what is $f(|x|)$? Give me a sketch of $f(|x|)$.
5. Given $f(x)=x^{3}+2 x^{2}$ and $g(x)=3 x^{2}-1$, find - and simplify - the following functions, and state the domain of each.
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f g)(x)$
d. $\left(\frac{f}{g}\right)(x)$

In the following exercises, find (a) $(f \circ g)(x)$, (b) $(g \circ f)(x),(\mathrm{c})(f \circ f)(x)$, and $(\mathrm{d})(g \circ g)(x)$. State the domain of each function.
6. $f(x)=x^{2}-1, g(x)=2 x+1$
7. $f(x)=x+\frac{1}{x}, g(x)=\frac{x+1}{x+2}$
8. Express $F(x)=\frac{\sqrt[3]{x}}{\sqrt[3]{x}+1}$ as a composition $(f \circ g)(x)$.
9. Use the given graph of f and g to evaluate the following, if possible. If not possible, state why.
(a) $f(g(2))$
(b) $g(f(0))$
(c) $(f \circ g)(0)$
(d) $(g \circ f)(6)$
(e) $(g \circ g)(-2)$
(f) $(f \circ f)(4)$
10. A spherical balloon is being inflated. Its radius is increasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$.
a. Express the radius, r, as a function of time, t, where t is measured in seconds.
b. Find volume, V, as a function of time, t. This is a little
 different wording than the book's wording, which is why my solution looks weird.

