1. A homeowner mows his lawn each Wednesday. Sketch a graph of the grass-height function, as a function over 4 weeks' time.
2. Let $f(x)=3 x^{2}-x+2$. Evaluate $f(2), f(-2), f(a), f(-a), f(a+1)$.

Find the domain and sketch
3. $g(x)=\sqrt{x-5}$
4. $f(x)= \begin{cases}x+2 & \text { if } x<0 \\ 1-x & \text { if } x \geq 0\end{cases}$
5. $f(x)=\left\{\begin{array}{cl}x+2 & \text { if } x \leq-1 \\ x^{2} & \text { if } x>-1\end{array}\right.$

Find an expression for the function whose graph is described in words or pictures.
6. The line segment from $(1,-3)$ to $(5,7)$.
7. The bottom half of the parabola $x+(y-1)^{2}=0$
8. The piecewise-defined function on the right.

Find a formula for the function described. State its domain.
9. A rectangle with perimeter $P=20$ meters. The function in question gives the area of the rectangle as a function of one of its sides.
10. An open rectangular box has a square base and volume 2 cubic
 meters. Express its surface area S as a function of the length of one of its sides.
11. A rectangle of cardboard is 12 inches by 20 inches. Squares of length and width x are cut out of its corners and the sides are folded up to form an open box. Express the volume V of this box as a function of the length x of the cuts made in the corners.

Determine whether the function is odd, even or neither.
12. $f(x)=\frac{x}{x^{2}+1}$.
13. $f(x)=1+3 x^{2}-x^{4}$

