

Show that $\tan x > x$ for $0 < x < \pi/2$. [*Hint:* Show that $f(x) = \tan x - x$ is increasing on $(0, \pi/2)$.]

$$f'(x) = \sec^{2}x - 1 \quad \stackrel{\text{SeT}}{=} 0$$

$$x = 0, x = T$$

$$x = 0, x =$$

- (a) Use a graph of f to estimate the maximum and minimum values. Then find the exact values.
- (b) Estimate the value of x at which f increases most rapidly. Then find the exact value.

43.
$$f(x) = \frac{x+1}{\sqrt{x^2+1}}$$

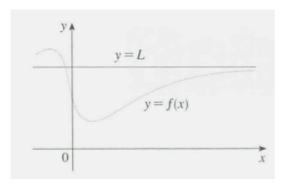
http://people.hofstra.edu/stefan_waner/realworld/functions/func.html

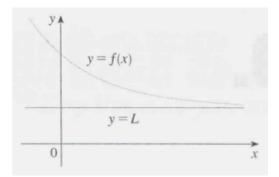
4.4 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES

I DEFINITION Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by taking x sufficiently large.







2 DEFINITION Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by taking x sufficiently large negative.

3 DEFINITION The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \qquad \text{or} \qquad \lim_{x \to -\infty} f(x) = L$$

Main examples of horizontal asymptotes: Rational functions where the degree of the numerator is the same as the degree of the denominator.

9-30 Find the limit.

10.
$$\lim_{x \to \infty} \frac{3x + 5}{x - 4}$$

13.
$$\lim_{x \to \infty} \frac{x^3 + 5x}{2x^3 - x^2 + 4}$$

17.
$$\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

The following is an "odd" application of the "rationalization technique."

$$\lim_{x\to\infty} \left(\sqrt{9x^2 + x} - 3x \right)$$

4 THEOREM If r > 0 is a rational number, then

$$\lim_{x\to\infty}\frac{1}{x^r}=0$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x \to -\infty} \frac{1}{x'} = 0$$

DEFINITION Let f be a function defined on some interval (a, ∞) . Then $\lim_{x \to \infty} f(x) = L$ means that for every $\varepsilon > 0$ there is a corresponding number N such that if x > N then $|f(x) - L| < \varepsilon$

We have a small number of exercises based on this formal definition, but we won't approach them in general; rather, we will be given a fixed epsilon, and then use a grapher to find an appropriate value of N.

7 DEFINITION Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = \infty$$

means that for every positive number M there is a corresponding positive number N such that

if
$$x > N$$
 then $f(x) > M$

Basically, to establish that it approaches infinity is to show that, given any big number M, you can find a value of x = N such that the function (y) stays above M whenever x > N.

"I can make it bigger than any fixed number. That means it's approaching infinity."