
4.2 THE MEAN VALUE THEOREM

ROLLE'S THEOREM Let f be a function that satisfies the following three hypotheses:

- 1. f is continuous on the closed interval [a, b].
- **2.** f is differentiable on the open interval (a, b).
- 3. f(a) = f(b)

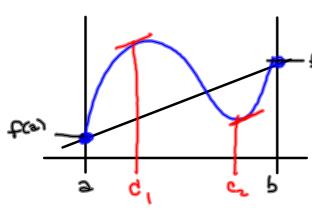
Then there is a number c in (a, b) such that f'(c) = 0.

THE MEAN VALUE THEOREM Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval [a, b].

2. f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that


1

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or, equivalently,

2

$$f(b) - f(a) = f'(c)(b - a)$$

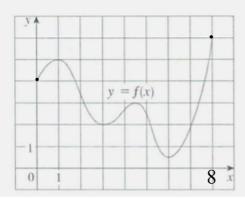
MVT is Rollo's Theorem for with different heights (possibly) at the endpoints.

MVT can be used to prove the following, which seems like a pretty obvious result.

5 THEOREM If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

And the result above leads very smoothly to the following corollary:

7 COROLLARY If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b); that is, f(x) = g(x) + c where c is a constant.


Before we start applying Rolle's and MVT to the exercises, note that there is no prescription for *finding* the value c. These theorems simply say that such a c exists. This is helpful, but only insofar as we know that there is a solution, so we're not wasting our time looking for something that isn't there...

1–4 Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers *c* that satisfy the conclusion of Rolle's Theorem.

3.
$$f(x) = \sqrt{x} - \frac{1}{3}x$$
, [0, 9]

5. Let $f(x) = 1 - x^{2/3}$. Show that f(-1) = f(1) but there is no number c in (-1, 1) such that f'(c) = 0. Why does this not contradict Rolle's Theorem?

7. Use the graph of f to estimate the values of c that satisfy the conclusion of the Mean Value Theorem for the interval [0, 8].

Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

14.
$$f(x) = \frac{x}{x+2}$$
, [1, 4]

15. Let $f(x) = (x - 3)^{-2}$. Show that there is no value of c in (1, 4) such that f(4) - f(1) = f'(c)(4 - 1). Why does this not contradict the Mean Value Theorem?

Suppose f(3) = 2 and $f'(x) \le 4$ for all $x \in [-1,11]$. Give an upper bound for f(6). (Cf #23)

Suppose $2 \le f'(x) \le 7$ for all x. Prove that $8 \le f(5) - f(1) \le 28$. (Cf #24).

Intuition Guide:

I always visualize MVT in terms of slope. So, assuming the hypotheses of MVT are satisfied, I think of the conclusion this way:

$$\exists c \in (a,b) \ni f'(c) = \frac{f(b) - f(a)}{b - a}$$

But for practical purposes, and in the exercises, we often see the conclusion written this way:

$$\exists c \in (a,b) \ni f(b) - f(a) = f'(c)(b-a)$$

26. Suppose that f and g are continuous on [a, b] and differentiable on (a, b). Suppose also that f(a) = g(a) and f'(x) < g'(x) for a < x < b. Prove that f(b) < g(b). [Hint: Apply the Mean Value Theorem to the function h = f - g.]