'3.] Match the graph of each function in (a)—(d) with the graph of
its derivative in I-IV. Give reasons for your choices.
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Trace or copy the graph of the given function f. (Assume
that the axes have equal scales.) Then use the method of Example
1 to sketch the graph of f" below it.
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These are no different from what we did in 3.1, except we're using x
instead of a, and we're thinking of the result as a function of x. The
mechanics are exactly the same as before. Also we will tend to use this
formulation,

. o flx + h) f(x)
Jx) lim - :
h—0 h

rather than this formulation:

,r*'l' fla)
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Recall, from 3.1 that when working with polynomials, this second
formulation required you to split off the factor of x - a and cancel it,
whereas in the first formulation, you simply expand the numerator, and
factor out 4.

In practice, I typically just work on the difference quotient and save the
limit until the last step. It's important not to connect limit with non-limit
by equals operator! If you're sloppy about this, I WILL deduct points.

St h; — /) — ...simplify and then pass to the limit ... — =% >

Find the derivative of the function using the definition of
derivative. State the domain of the function and the domain of its
derivative.

21, f(x) =x>*—3x+5

Recall, we did a cubic in class last time using the first formulation. This time
we use the "h".



The graph of f is given. State, with reasons, the numbers
at which f is not differentiable.
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How might a function fail to have a derivative at some x = a?

Not continuous at a.
Not "smooth" at a.
Absolute value comes to a "point."

Functions like (x- a)m actually "go vertical" at x = a.
In general, any power-type function, (x- a)b where the power, b, is
between 0 and 1 is going to be continuous everywhere, but will have a vertical

tangent at x = a.

Finally, read Definition 3.
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