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3.1

DERIVATIVES AND RATES OF CHANGE

Recall, from Section 2.1 and Test 1:

The slope of the secant line between P and Q: oy = f) = fla)
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As we take the point O closer and closer to the point P, the resulting line
approaches the tangent line to f at P:
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DEFINITION The tangent line to the curve y = f(x) at the point P(a, f(a)) is

the line through P with slope
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provided that this limit exists.

Its equation is given by: v — v, = mlx — x,)

y=m(x—x)+y


http://www.stewartcalculus.com/tec/

Equation 2 for the slope of the tangent line is equivalent to Equation 1.
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Smooth curves are "locally linear." The more you zoom in, the flatter things
look. A man in space knows the Earth is round, but (some) people on the
ground thought it was flat for thousands of years.

Demo a quadratic function (parabola). Follow the link to see Local Linearity
with the "TANGENT ZOOM." chave -
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Tangent line questions:

Find an equation of the tangent line to the curve at the

given point.

6. y=

S
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(—1,3)

Find the slope of the tangent line (the slope of the curve) at x =- 1 by

the definition.

Find the equation of the tangent line. The book does some ugly things
with these. Point-slope or slope-intercept is the way to go.
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Here's a picture of what we're
doing. The tangent line is in
black.
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10. (a) Find the slope of the tangent to the curve y = l/"\,f{l_' at
the point where x = a.

(b) Find equations of the tangent lines at the points (1, 1)
and (4, 5).

| (¢) Graph the curve and both tangents on a common screen.
PART C IS ON THE NEXT PAGE.
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More of the same, just different words:

4| DI The derivative of a function f at a number a, denoted by
f'la), is
fla + h) — fla)

 —

h

f'(a) = lin
b=

if this limit exists.

Other names for this:
Velocity is the derivative of distance. It's all about the instantaneous rate of

change of f(x) with respect to x when x=a .
Other ways of expressing it:

f(x2) = flx)

-
instantaneous rate of change = lim _‘x_ = lim
(21 X — X

Ax—0 Ax
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-3 Find f'(a).

28. f(x) =

x- ==

x_
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29. f(x) =

-
(2
)
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Determine whether f'(0) exists.

)
1
= xsin— if x#0
1. f (x) = \ A Doesn't
0 if x=20
\
' l
o xtsin— if x# 0
52. f(x) = 9 x Does.
L0 if x=0

This is an advanced calculus question that is very difficult to answer
formally, but isn't too bad, if you approach it numerically.

The way I think of it, the x dampens the sin(1/x) enough to make it converge to zero at x = 0 (in
the limit), so #51 is CONTINUOUS, with this definition.

#52 passes a higher standard. It's not only continuous at x = 0, but it's smooth at x = 0. This is
very cool.
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