LIMIT LAWS Suppose that c is a constant and the limits

$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
 6. $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n$$

where n is a positive integer

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
 7. $\lim_{x \to a} c = c$

7.
$$\lim_{x\to a}c=c$$

8.
$$\lim_{x\to a} x = a$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

9.
$$\lim_{x \to a} x^n = a^n$$
 where *n* is a positive integer

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$ 10. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ where *n* is a positive integer (If *n* is even, we assume that a > 0.)

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

where n is a positive integer

DIRECT SUBSTITUTION PROPERTY If f is a polynomial or a rational function and ais in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided the limits exist.

 $\lim_{x \to a} f(x) = L$ if and only if THEOREM $\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$

THEOREM If $f(x) \le g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

THE SQUEEZE THEOREM If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L$$