LIMIT LAWS Suppose that ¢ is a constant and the limits
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(I n is even, we assume that a = 0.)

1. lim ¥f(xy = ’f],,'_lxnﬂ flx) where 71 is a positive integer

X =

DIRECT SUBSTITUTION PROPERTY If f is a polynomial or a rational function and a

is in the domain of f, then

lim £(x) = f(a)

If f(x) = g(x) when x # a, then lim S(x) = lim g(

x), provided the limits exist.
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[1] THEOREM .1i_13{1xf(.r} =L if and only if lim f(x) = L = lim f(x)

[2] THEOREM If f(x) = g(x) when x is near a (except possibly at a) and the limits
of f and g both exist as x approaches a, then

r==d

lim £(x) < lim g(x)

[3] THE SQUEEZE THEOREM If f(x) = g(x) = h(x) when x is near a (except

possibly at @) and

!ir_r; flx) = ]'11'1‘] hix) =L

then lim g(x) = L
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