—/123| CALCULATING LIMITS USING THE LIMIT LAWS

LIMIT LAWS Suppose that ¢ is a constant and the limits
li_r.n Jx) and lim g(x) ’

exist. Then .
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UM LW I. The limit of a sum is the sum of the limits.
DIFFERENCE LAW 2. The limit of a difference is the difference of the limits. .
constanT muirpte 3. The limit of a constant times a function is the constant times the limit of the
function.
PRODUCT LAW 4. Thelimitof a product is the product of the limits.
5. The limit of a quotient is the quotient of the limits (provided that the limit of the
denominator is not 0).

QUOTIENT LAW

Limit of the power is the power of the limit...
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6. lim [f(9]" = [lim /(0] where n is a positive intcger ‘l":i(’ﬂ g "3
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With two more laws, below, we're ready to handle limits for = 2) bd "’

polynomials, rational functions, powers and roots (if we stretch a
point on what we know about rational powers as roots).
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The following is"a consequence of 6. and 8.  ®**>2
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Since roots can be thought of as rational powers, this makes sense:

10. lim &/x = ¢/a  where n is a positive integer
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(If n is even, we assume that a = 0.)
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Just as we would hope and expect: - *\
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1. lim {f(x) = lim f(x)  where nis a positive integer
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| It was
Isaac Newton who was the first to talk explicitly
about limits. He explained that the main idea
behind limits is that quantities “approach nearer
than by any given difference.”

Putting more of the Laws together, we have this nice, tidy package:

DIRECT SUBSTITUTION PROPERTY If f is a polynomial or a rational function and a
is in the domain of f, then ' - (“,_ gt
lim f(x) = f(a)
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' S(x) = g(x) when x # a, then 112 flx) = }133 g(x), provided the limits exist, 1
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This is irrespective of the actual values of f(a)and g(a)!
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