4.3 Solutions

- 3. (a) Use the Increasing/Decreasing (I/D) Test.
- (b) Use the Concavity Test.
- (c) At any value of x where the concavity changes, we have an inflection point at (x, f(x)).
- 4. (a) See the First Derivative Test.
 - (b) See the Second Derivative Test and the note that precedes Example 7.
- **6.** (a) f'(x) > 0 and f is increasing on (0,1) and (3,5). f'(x) < 0 and f is decreasing on (1,3) and (5,6).
 - (b) Since f'(x) = 0 at x = 1 and x = 5 and f' changes from positive to negative at both values, f changes from increasing to decreasing and has local maxima at x = 1 and x = 5. Since f'(x) = 0 at x = 3 and f' changes from negative to positive there, f changes from decreasing to increasing and has a local minimum at x = 3.
- 8. (a) f is increasing on the intervals where f'(x) > 0, namely, (2,4) and (6,9).
 - (b) f has a local maximum where it changes from increasing to decreasing, that is, where f' changes from positive to negative (at x = 4). Similarly, where f' changes from negative to positive, f has a local minimum (at x = 2 and at x = 6).
 - (c) When f' is increasing, its derivative f'' is positive and hence, f is concave upward. This happens on (1,3), (5,7), and (8,9). Similarly, f is concave downward when f' is decreasing—that is, on (0,1), (3,5), and (7,8).
 - (d) f has inflection points at x = 1, 3, 5, 7, and 8, since the direction of concavity changes at each of these values.

11. (a)
$$f(x) = x^4 - 2x^2 + 3 \implies f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x + 1)(x - 1)$$
.

Interval	x + 1	x	x-1	f'(x)	f
x < -1	_	_	_	_	decreasing on $(-\infty, -1)$
-1 < x < 0	+	_	_	+	increasing on $(-1,0)$
0 < x < 1	+	+	_	_	decreasing on (0, 1)
x > 1	+	+	+	+	increasing on $(1, \infty)$

- (b) f changes from increasing to decreasing at x = 0 and from decreasing to increasing at x = -1 and x = 1. Thus, f(0) = 3 is a local maximum value and $f(\pm 1) = 2$ are local minimum values.
- (c) $f''(x) = 12x^2 4 = 12\left(x^2 \frac{1}{3}\right) = 12\left(x + 1/\sqrt{3}\right)\left(x 1/\sqrt{3}\right)$. $f''(x) > 0 \Leftrightarrow x < -1/\sqrt{3} \text{ or } x > 1/\sqrt{3} \text{ and } f''(x) < 0 \Leftrightarrow -1/\sqrt{3} < x < 1/\sqrt{3}$. Thus, f is concave upward on $\left(-\infty, -\sqrt{3}/3\right)$ and $\left(\sqrt{3}/3, \infty\right)$ and concave downward on $\left(-\sqrt{3}/3, \sqrt{3}/3\right)$. There are inflection points at $\left(\pm\sqrt{3}/3, \frac{22}{9}\right)$.

- 14. (a) $f(x) = \cos^2 x 2\sin x$, $0 \le x \le 2\pi$. $f'(x) = -2\cos x \sin x 2\cos x = -2\cos x (1 + \sin x)$. Note that $1 + \sin x \ge 0$ [since $\sin x \ge -1$], with equality $\Leftrightarrow \sin x = -1 \Leftrightarrow x = \frac{3\pi}{2}$ [since $0 \le x \le 2\pi$] $\Rightarrow \cos x = 0$. Thus, $f'(x) > 0 \Leftrightarrow \cos x < 0 \Leftrightarrow \frac{\pi}{2} < x < \frac{3\pi}{2}$ and $f'(x) < 0 \Leftrightarrow \cos x > 0 \Leftrightarrow 0 < x < \frac{\pi}{2}$ or $\frac{3\pi}{2} < x < 2\pi$. Thus, f is increasing on $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ and f is decreasing on $\left(0, \frac{\pi}{2}\right)$ and $\left(\frac{3\pi}{2}, 2\pi\right)$.
 - (b) f changes from decreasing to increasing at $x = \frac{\pi}{2}$ and from increasing to decreasing at $x = \frac{3\pi}{2}$. Thus, $f\left(\frac{\pi}{2}\right) = -2$ is a local minimum value and $f\left(\frac{3\pi}{2}\right) = 2$ is a local maximum value.
 - $(c) \ f''(x) = 2\sin x \ (1+\sin x) 2\cos^2 x = 2\sin x + 2\sin^2 x 2(1-\sin^2 x)$ $= 4\sin^2 x + 2\sin x 2 = 2(2\sin x 1)(\sin x + 1)$ $\operatorname{so} \ f''(x) > 0 \quad \Leftrightarrow \quad \sin x > \frac{1}{2} \quad \Leftrightarrow \quad \frac{\pi}{6} < x < \frac{5\pi}{6}, \text{ and } f''(x) < 0 \quad \Leftrightarrow \quad \sin x < \frac{1}{2} \text{ and } \sin x \neq -1 \quad \Leftrightarrow$ $0 < x < \frac{\pi}{6} \text{ or } \frac{5\pi}{6} < x < \frac{3\pi}{2} \text{ or } \frac{3\pi}{2} < x < 2\pi. \text{ Thus, } f \text{ is concave upward on } \left(\frac{\pi}{6}, \frac{5\pi}{6}\right) \text{ and concave downward on } \left(0, \frac{\pi}{6}\right),$ $\left(\frac{5\pi}{6}, \frac{3\pi}{2}\right), \text{ and } \left(\frac{3\pi}{2}, 2\pi\right). \text{ There are inflection points at } \left(\frac{\pi}{6}, -\frac{1}{4}\right) \text{ and } \left(\frac{5\pi}{6}, -\frac{1}{4}\right).$
- 17. $f(x) = x + \sqrt{1-x}$ \Rightarrow $f'(x) = 1 + \frac{1}{2}(1-x)^{-1/2}(-1) = 1 \frac{1}{2\sqrt{1-x}}$. Note that f is defined for $1-x \ge 0$; that is, for $x \le 1$. f'(x) = 0 \Rightarrow $2\sqrt{1-x} = 1$ \Rightarrow $\sqrt{1-x} = \frac{1}{2}$ \Rightarrow $1-x = \frac{1}{4}$ \Rightarrow $x = \frac{3}{4}$. f' does not exist at x = 1, but we can't have a local maximum or minimum at an endpoint.

First Derivative Test: $f'(x) > 0 \implies x < \frac{3}{4}$ and $f'(x) < 0 \implies \frac{3}{4} < x < 1$. Since f' changes from positive to negative at $x = \frac{3}{4}$, $f(\frac{3}{4}) = \frac{5}{4}$ is a local maximum value.

Second Derivative Test:
$$f''(x) = -\frac{1}{2}(-\frac{1}{2})(1-x)^{-3/2}(-1) = -\frac{1}{4(\sqrt{1-x})^3}$$

 $f''\left(\frac{3}{4}\right) = -2 < 0 \quad \Rightarrow \quad f\left(\frac{3}{4}\right) = \frac{5}{4} \text{ is a local maximum value.}$

Preference: The First Derivative Test may be slightly easier to apply in this case.

- **18.** (a) $f(x) = x^4(x-1)^3 \implies f'(x) = x^4 \cdot 3(x-1)^2 + (x-1)^3 \cdot 4x^3 = x^3(x-1)^2 \left[3x + 4(x-1)\right] = x^3(x-1)^2 (7x-4)$ The critical numbers are 0, 1, and $\frac{4}{7}$.
 - (b) $f''(x) = 3x^2(x-1)^2(7x-4) + x^3 \cdot 2(x-1)(7x-4) + x^3(x-1)^2 \cdot 7$ = $x^2(x-1)[3(x-1)(7x-4) + 2x(7x-4) + 7x(x-1)]$

Now f''(0) = f''(1) = 0, so the Second Derivative Test gives no information for x = 0 or x = 1.

$$f''\left(\frac{4}{7}\right) = \left(\frac{4}{7}\right)^2\left(\frac{4}{7}-1\right)\left[0+0+7\left(\frac{4}{7}\right)\left(\frac{4}{7}-1\right)\right] = \left(\frac{4}{7}\right)^2\left(-\frac{3}{7}\right)(4)\left(-\frac{3}{7}\right) > 0$$
, so there is a local minimum at $x = \frac{4}{7}$.

(c) f' is positive on $(-\infty, 0)$, negative on $(0, \frac{4}{7})$, positive on $(\frac{4}{7}, 1)$, and positive on $(1, \infty)$. So f has a local maximum at x = 0, a local minimum at $x = \frac{4}{7}$, and no local maximum or minimum at x = 1.

4.3 Solutions

- 32. (a) $g(x) = 200 + 8x^3 + x^4 \implies g'(x) = 24x^2 + 4x^3 = 4x^2(6+x) = 0$ when x = -6 and when x = 0. $g'(x) > 0 \iff x > -6 \quad [x \neq 0]$ and $g'(x) < 0 \iff x < -6$, so g is decreasing on $(-\infty, -6)$ and g is increasing on $(-6, \infty)$, with a horizontal tangent at x = 0.
 - (b) g(-6) = -232 is a local minimum value.

There is no local maximum value.

- 39. (a) $f(\theta) = 2\cos\theta + \cos^2\theta$, $0 \le \theta \le 2\pi \implies f'(\theta) = -2\sin\theta + 2\cos\theta (-\sin\theta) = -2\sin\theta (1+\cos\theta)$. $f'(\theta) = 0 \iff \theta = 0, \pi, \text{ and } 2\pi. \ f'(\theta) > 0 \iff \pi < \theta < 2\pi \text{ and } f'(\theta) < 0 \iff 0 < \theta < \pi. \text{ So } f \text{ is increasing on } (\pi, 2\pi) \text{ and } f \text{ is decreasing on } (0, \pi).$
 - (b) $f(\pi) = -1$ is a local minimum value.
 - (c) $f'(\theta) = -2\sin\theta (1 + \cos\theta) \implies$

$$f''(\theta) = -2\sin\theta (-\sin\theta) + (1+\cos\theta)(-2\cos\theta) = 2\sin^2\theta - 2\cos\theta - 2\cos^2\theta$$
$$= 2(1-\cos^2\theta) - 2\cos\theta - 2\cos^2\theta = -4\cos^2\theta - 2\cos\theta + 2$$
$$= -2(2\cos^2\theta + \cos\theta - 1) = -2(2\cos\theta - 1)(\cos\theta + 1)$$

Since $-2(\cos\theta+1)<0$ [for $\theta\neq\pi$], $f''(\theta)>0 \Rightarrow 2\cos\theta-1<0 \Rightarrow \cos\theta<\frac{1}{2} \Rightarrow \frac{\pi}{3}<\theta<\frac{5\pi}{3}$ and $f''(\theta)<0 \Rightarrow \cos\theta>\frac{1}{2} \Rightarrow 0<\theta<\frac{\pi}{3} \text{ or } \frac{5\pi}{3}<\theta<2\pi.$ So f is CU on $\left(\frac{\pi}{3},\frac{5\pi}{3}\right)$ and f is CD on $\left(0,\frac{\pi}{3}\right)$ and $\left(\frac{5\pi}{3},2\pi\right)$. There are points of inflection at $\left(\frac{\pi}{3},f\left(\frac{\pi}{3}\right)\right)=\left(\frac{\pi}{3},\frac{5}{4}\right)$ and $\left(\frac{5\pi}{3},f\left(\frac{5\pi}{3}\right)\right)=\left(\frac{5\pi}{3},\frac{5}{4}\right)$.

41. The nonnegative factors $(x+1)^2$ and $(x-6)^4$ do not affect the sign of $f'(x)=(x+1)^2(x-3)^5(x-6)^4$. So $f'(x)>0 \implies (x-3)^5>0 \implies x-3>0 \implies x>3$. Thus, f is increasing on the interval $(3,\infty)$.

4.3 Solutions

52. At first the depth increases slowly because the base of the mug is wide. But as the mug narrows, the coffee rises more quickly. Thus, the depth d increases at an increasing rate and its graph is concave upward. The rate of increase of d has a maximum where the mug is narrowest; that is, when the mug is half full. It is there that the inflection point (IP) occurs. Then the rate of increase of d starts to decrease as the mug widens and the graph becomes concave down.

- 56. (a) We will make use of the converse of the Concavity Test (along with the stated assumptions); that is, if f is concave upward on I, then f'' > 0 on I. If f and g are CU on I, then f'' > 0 and g'' > 0 on I, so (f+g)'' = f'' + g'' > 0 on $I \Rightarrow f+g$ is CU on I.
 - (b) Since f is positive and CU on I, f > 0 and f'' > 0 on I. So $g(x) = [f(x)]^2 \implies g' = 2ff' \implies g'' = 2f'f' + 2ff'' = 2(f')^2 + 2ff'' > 0 \implies g$ is CU on I.