1.3 I Solutions

- 1. (a) If the graph of f is shifted 3 units upward, its equation becomes y = f(x) + 3.
 - (b) If the graph of f is shifted 3 units downward, its equation becomes y = f(x) 3.
 - (c) If the graph of f is shifted 3 units to the right, its equation becomes y = f(x 3).
 - (d) If the graph of f is shifted 3 units to the left, its equation becomes y = f(x + 3).
 - (e) If the graph of f is reflected about the x-axis, its equation becomes y = -f(x).
 - (f) If the graph of f is reflected about the y-axis, its equation becomes y = f(-x).
 - (g) If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3f(x).
 - (h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes $y = \frac{1}{3}f(x)$.
- 2. (a) To obtain the graph of y = 5f(x) from the graph of y = f(x), stretch the graph vertically by a factor of 5.
 - (b) To obtain the graph of y = f(x 5) from the graph of y = f(x), shift the graph 5 units to the right.
 - (c) To obtain the graph of y = -f(x) from the graph of y = f(x), reflect the graph about the x-axis.
 - (d) To obtain the graph of y = -5f(x) from the graph of y = f(x), stretch the graph vertically by a factor of 5 and reflect it about the x-axis.
 - (e) To obtain the graph of y = f(5x) from the graph of y = f(x), shrink the graph horizontally by a factor of 5.
 - (f) To obtain the graph of y = 5f(x) 3 from the graph of y = f(x), stretch the graph vertically by a factor of 5 and shift it 3 units downward.
- 6. The graph of $y = f(x) = \sqrt{3x x^2}$ has been shifted 2 units to the right and stretched vertically by a factor of 2.

Thus, a function describing the graph is

$$y = 2f(x-2) = 2\sqrt{3(x-2) - (x-2)^2} = 2\sqrt{3x - 6 - (x^2 - 4x + 4)} = 2\sqrt{-x^2 + 7x - 10}$$

7. The graph of $y = f(x) = \sqrt{3x - x^2}$ has been shifted 4 units to the left, reflected about the x-axis, and shifted downward 1 unit. Thus, a function describing the graph is

$$y = \underbrace{-1 \cdot}_{\text{reflect}} \qquad f \underbrace{(x+4)}_{\text{shift}} \qquad \underbrace{-1}_{\text{shift}}$$
about x-axis 4 units left 1 unit left

This function can be written as

$$y = -f(x+4) - 1 = -\sqrt{3(x+4) - (x+4)^2} - 1 = -\sqrt{3x + 12 - (x^2 + 8x + 16)} - 1 = -\sqrt{-x^2 - 5x - 4} - 1$$

1.3 I Solutions

9. $y = -x^3$: Start with the graph of $y = x^3$ and reflect about the x-axis. Note: Reflecting about the y-axis gives the same result since substituting -x for x gives us $y = (-x)^3 = -x^3$.

18. $y = (x+2)^4 + 3$: Start with the graph of $y = x^4$, shift 2 units to the left, and then shift 3 units upward.

27. (a) To obtain y = f(|x|), the portion of the graph of y = f(x) to the right of the y-axis is reflected about the y-axis.

(b)
$$y = \sin |x|$$

(c)
$$y = \sqrt{|x|}$$

