Test 4, Fall, 2019 Covers Chapter 4 Name_

You know the drill. And remember to circle final answers.

- 1. (10 pts) Use the limit definition of the definite integral to evaluate $\int_{1}^{4} 7x^{2} dx$.
- 2. (10 pts) Show that $\int_0^3 (9-x^2) dx = \int_2^{11} \sqrt{y-2} dy$ by evaluating each, separately.

3. (20 pts) Evaluate the definite integral: $\int_{0}^{\frac{2\pi}{3}} \left| 2\sin(x) - \sqrt{3} \right| dx$.

- 4. (10 pts) Evaluate $\int_{0}^{4} (3x-1)^5 dx$.
- 5. Evaluate one of the following indefinite integrals:

a. (20 pts)
$$\int x^2 (3x-1)^5 dx$$

b. (20 pts)
$$\int \frac{(6x-5)}{\sqrt[3]{9x^2-15x}} dx$$

6. (10 pts) Evaluate the definite integral $\int_0^{\frac{\pi}{3}} \sec^5(x) \sin(x) dx$

7. Perform the indicated differentiation:

a. (10 pts)
$$\frac{d}{dx} \int_{3}^{x} \sin^{3}(t^{2}\cos(t)) dt$$

b. (10 pts)
$$\frac{d}{dx} \int_{0}^{x^{2}+2x} \sin^{3}(t^{2}\cos(t)) dt$$

Bonus Section Answer any 15-points'-worth of the following:

Bonus 1 (10 pts) Sketch the graph of $f(x) = 2\sin(x) - \sqrt{3}$, showing all intercepts, extrema and inflection points.

Bonus 2 (10 pts) Sketch the graph of $g(x) = |2\sin(x) - \sqrt{3}|$, showing all intercepts, extrema and inflection points.

Bonus 3 (5 pts) (Evaluate
$$\frac{d}{dx} \int_{x^5}^{x^2+2x} \sin^3(t^2\cos(t)) dt$$

Bonus 4 (10 pts) Use the graph of one function to show what's going on with the two integrals in #2.

- **Bonus 5** (5 pts) Find an upper and lower bound for $\int_{0}^{\frac{\pi}{2}} (2\sin(x) \sqrt{3}) dx$, without evaluating the integral itself.
- **Bonus 6** (5 pts) Confirm that the hypotheses of the Mean Value Theorem hold for $f(x) = 2\sin(x) \sqrt{3}$ on $\left[0, \frac{\pi}{2}\right]$, and find the *c* that is promised in the conclusion of the theorem.

Bonus 7 (5 pts) Compute the derivative of $f(x) = \sqrt{5x}$ by the limit definition.

- **Bonus 8** (10 pts) Use the tangent line to approximate $\cos(32^{\circ})$.
- **Bonus 9** (5 pts) Explain, using the diagram, below, how Newton's Method takes us from our first guess, x_1 , to our second guess, x_2 . Then write the general recursion for Newton's Method.

