\qquad

You know the drill. And remember to circle final answers.

1. (10 pts) Use the limit definition of the definite integral to evaluate $\int_{1}^{4} 7 x^{2} d x$.
2. (10 pts) Show that $\int_{0}^{3}\left(9-x^{2}\right) d x=\int_{2}^{11} \sqrt{y-2} d y$ by evaluating each, separately.
3. (20 pts) Evaluate the definite integral: $\int_{0}^{\frac{2 \pi}{3}}|2 \sin (x)-\sqrt{3}| d x$.
4. (10 pts) Evaluate $\int_{0}^{4}(3 x-1)^{5} d x$.
5. Evaluate one of the following indefinite integrals:
a. (20 pts) $\int x^{2}(3 x-1)^{5} d x$
b. (20 pts) $\int \frac{(6 x-5)}{\sqrt[3]{9 x^{2}-15 x}} d x$
6. (10 pts) Evaluate the definite integral $\int_{0}^{\frac{\pi}{3}} \sec ^{5}(x) \sin (x) d x$
7. Perform the indicated differentiation:
a. $(10 \mathrm{pts}) \frac{d}{d x} \int_{3}^{x} \sin ^{3}\left(t^{2} \cos (t)\right) d t$
b. (10 pts) $\frac{d}{d x} \int_{0}^{x^{2}+2 x} \sin ^{3}\left(t^{2} \cos (t)\right) d t$

Bonus Section Answer any 15-points'-worth of the following:

Bonus 1 (10 pts) Sketch the graph of $f(x)=2 \sin (x)-\sqrt{3}$, showing all intercepts, extrema and inflection points.

Bonus 2 (10 pts) Sketch the graph of $g(x)=|2 \sin (x)-\sqrt{3}|$, showing all intercepts, extrema and inflection points.
Bonus 3 (5 pts) (Evaluate $\frac{d}{d x} \int_{x^{5}}^{x^{2}+2 x} \sin ^{3}\left(t^{2} \cos (t)\right) d t$

Bonus 4 (10 pts) Use the graph of one function to show what's going on with the two integrals in \#2.

Bonus 5 (5 pts) Find an upper and lower bound for $\int_{0}^{\frac{\pi}{2}}(2 \sin (x)-\sqrt{3}) d x$, without evaluating the integral itself.

Bonus 6 (5 pts) Confirm that the hypotheses of the Mean Value Theorem hold for $f(x)=2 \sin (x)-\sqrt{3}$ on $\left[0, \frac{\pi}{2}\right]$, and find the c that is promised in the conclusion of the theorem.

Bonus 7 (5 pts) Compute the derivative of $f(x)=\sqrt{5 x}$ by the limit definition.
Bonus 8 (10 pts) Use the tangent line to approximate $\cos \left(32^{\circ}\right)$.
Bonus 9 (5 pts) Explain, using the diagram, below, how Newton's Method takes us from our first guess, x_{1}, to our second guess, x_{2}. Then write the general recursion for Newton's Method.

