\qquad

You know the drill. And remember to circle final answers.

1. Let $f(x)=x^{3}-9 x^{2}+15 x-135$ for the following problems:
a. (25 pts) Sketch the graph of $f(x)$. Show all extreme points and inflection points. I also expect to see the x-intercept(s) and y-intercept. Work in the following order:
$1^{\text {st }}$ derivative, critical point(s), sign pattern -4 pts
$2^{\text {nd }}$ derivative, inflection point(s), sign pattern -4 pts
General shape of $f-4$ pts
x-intercept(s), sign pattern -3 pts
y-intercept(s) - 1 pt
General location of f at the extreme(s) and the inflection point(s) -4 pts
Precise value of f at the extremes and the inflection point(s) - 1 pt
Put it all together in the graph, with proper labels (ordered-pair labels) of key points -4 pts
b. (10 pts) Find the maximum and minimum of $f(x)$ on the interval $[0,3]$.
c. (10 pts) Confirm that the hypotheses of the Mean Value Theorem hold for $f(x)=x^{3}-9 x^{2}+15 x-135$ on $[0,3]$, and find the c that is promised in the conclusion of the theorem.
2. (10 pts) Find all local extremes of $g(x)=\cos (x) \sin (x)+\sin (x)$ in the interval $[0,2 \pi)$.
3. (10 pts) Sketch the graph of a function g that has all the properties given:

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} g(x)=\infty, \lim _{x \rightarrow-2^{+}} g(x)=-\infty \\
& g(1)=0, \\
& g^{\prime}(2)=0, g(2)=3, \\
& g^{\prime}(x)>0 \quad \forall x \in(-\infty,-2) \cup(2, \infty), \\
& g^{\prime}(x)<0 \forall x \in(-\infty,-2) \cup(2, \infty) \\
& g^{\prime \prime}(3)=0, g(3)=2, \\
& g^{\prime \prime}(x)>0 \forall x \in(-\infty,-2) \cup(3, \infty) \\
& g^{\prime \prime}(x)<0 \forall x \in(3, \infty)
\end{aligned}
$$

4. (5 pts) Evaluate $\lim _{x \rightarrow \infty}\left(\sqrt{25 x^{2}-11 x}-5 x\right)$.

Bonus Answer up to 3 Bonus questions.
Bonus 1 (5 pts) Sketch the graph of $R(x)=\frac{x^{2}+2 x-15}{x+2}$, showing all intercepts and asymptotes. This problem requires no calculus.

Bonus 2 (5 pts) Minimize the distance between $g(x)=5 x-3$ and the point $(-8,1)$.

Bonus 3 (5 pts) Derive the recursion formula for Newton's method and use the figure, below to illustrate how x_{2} is obtained from X_{1}.

Bonus 4 (5 pts) Use a differential to estimate the maximum error in the calculated volume of a sphere whose measueed radius is 10 cm , if the error in measurement could be as large as 0.1 cm .

Bonus 5 (5 pts) Use the tangent line to approximate $\sin \left(33^{0}\right)$. Remember to convert to radians! Degrees don’t play nice with derivatives. Don't simplify.

Bonus 6 (5 pts) Find $\frac{d y}{d x}$ if $x^{2}-3 x y+y^{2}-6=x^{2} y^{3}+8$. Then find an equation of the tangent line to the curve at $\left(1,-\frac{13}{3}\right)$.

