Do all your work and put all your answers WITH your work, CIRCLED, on the white paper provided. All I want on this sheet is your NAME! Spend no more than 2 minutes on any single problem on your first pass through the test. If you don't finish a problem in 2 or 3 minutes, start a fresh sheet of paper for the next problem, and so on.

1. (15 pts) The point $P(3,12)$ lies on the graph of $f(x)=3 x^{2}-5 x$. Estimate the slope of this curve at $P$, by evaluating the slope between the point $P$ and the point $Q(3.001, f(3.001))$.
2. (5 pts) Any guess as to what the actual slope is at $x=3$ ?
3. (5 pts) Based on your answer to \#2, write the equation of the tangent line to $f(x)$ at $P$.
4. (5 pts each) Evaluate the following limits, if they exist. If one does not exist, explain why.
a. $\lim _{x \rightarrow 5^{+}} \frac{3 x^{2}-13 x-10}{|x-5|}$
b. $\lim _{x \rightarrow 5^{-}} \frac{3 x^{2}-13 x-10}{|x-5|}$
c. $\lim _{x \rightarrow 5} \frac{3 x^{2}-13 x-10}{|x-5|}$
5. (15 pts) Sketch the graph of the piecewise-defined function $f(x)=\left\{\begin{array}{ll}\frac{3}{x+2} & \text { if } x<1 \\ x^{2}+1 & \text { if } x \geq 1\end{array}\right.$. I'm looking for key points labeled with ordered-pair labels (OPL's, baby!)

Bonus ( 5 pts) On what interval(s) is $f$ in \#5 continuous?
6. Simplify $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for the following functions:
a. (10 pts) $f(x)=3 x^{2}-5 x$
b. (5 pts) $f(x)=\frac{1}{x}$
7. ( 10 pts ) Sketch a plausible graph of a mostly-smooth function $f$ that has the following properties. (Note: That very last condition is a later topic, "limits at infinity." So, 5 bonus points for the horizontal asymptote.)
a. $\lim _{x \rightarrow-3^{-}} f(x)=\infty$
b. $\lim _{x \rightarrow-3^{+}} f(x)=-\infty$
c. $\quad f(-1)=0$
d. $\lim _{x \rightarrow 2^{-}} f(x)=3$
e. $\lim _{x \rightarrow 2^{+}} f(x)=-1$
f. $\quad f(2)=3$
g. $f(3)=0$
h. $\lim _{x \rightarrow 8} f(x)=\infty$
i. $\lim _{|x| \rightarrow \infty} f(x)=1$
8. (10 pts) Prove that $\lim _{x \rightarrow 3}(5 x+2)=17$, using the $\varepsilon-\delta$ definition of limit.
9. (5 pts) Prove that the equation $\frac{1}{4} \cdot 2^{x}-x^{2}+4 x-3=0$ has a root in the interval $(0,2)$, but do not solve!

BONUS SECTION: Work any 2 bonus questions for up to 10 bonus points.

1. (5 pts) Prove that $\lim _{x \rightarrow 2}\left(3 x^{2}-5 x+1\right)=3$
2. (5 pts) Evaluate $\lim _{h \rightarrow 0} \frac{\sqrt{2 x+2 h}-\sqrt{2 x}}{h}$, if it exists. If it does not, state why.

3. (5 pts) See if you can squeeze out a convincing argument to support the statement $\lim _{x \rightarrow 0}\left(x^{2} \sin \left(\frac{\pi}{x}\right)\right)=0$.
