Here's a visualization of Section 3.2 \#16 from the text.

$$
\begin{align*}
& \text { with(plots) : } \\
& f:=x \rightarrow x^{3}-2 \cdot x \\
& f:=x \mapsto x^{3}-2 x \\
& f p:=\mathrm{D}(f) \\
& f p:=x \mapsto 3 x^{2}-2 \\
& m s e c:=\frac{(f(2)-f(-2))}{2-(-2)} \\
& m s e c:=2 \tag{3}\\
& \text { secline }:=x \rightarrow \operatorname{msec} \cdot(x-2)+f(2) \\
& \text { secline }:=x \mapsto \operatorname{msec}(x-2)+f(2) \\
& \operatorname{plot}([f(x), \operatorname{secline}(x)], x=-3 . .3, y=-5 . .5)
\end{align*}
$$

$$
\text { line } 1:=x \rightarrow 2 \cdot\left(x-\frac{2}{\operatorname{sqrt}(3)}\right)+f\left(\frac{2}{\operatorname{sqrt}(3)}\right)
$$

$$
\begin{equation*}
\text { line1 }:=x \mapsto 2 x-\frac{4}{\sqrt{3}}+f\left(\frac{2}{\sqrt{3}}\right) \tag{5}
\end{equation*}
$$

line $2:=x \rightarrow 2 \cdot\left(x+\frac{2}{\operatorname{sqrt}(3)}\right)+f\left(\frac{-2}{\operatorname{sqrt}(3)}\right)$

$$
\begin{equation*}
\text { line } 2:=x \mapsto 2 x+\frac{4}{\sqrt{3}}+f\left(-\frac{2}{\sqrt{3}}\right) \tag{6}
\end{equation*}
$$

$\operatorname{plot}([f(x), \operatorname{secline}(x), \operatorname{line} 1(x), \operatorname{line} 2(x)], x=-3 . .3, y=-5 . .5)$

