Name___

You know the drill. And remember to circle final answers.

- 1. (20 pts) Sketch and find the area of the region bounded by $f(x) = 4\sqrt{2x}$ and $g(x) = 2x^2$.
- 2. Sketch the solid and then write the integral for the volume of the solid of revolution obtained by revolving the region bounded by $f(x) = 4\sqrt{2x}$ and $g(x) = 2x^2$ about the y-axis, using...
 - a. (10 pts) ... washers (slices) and
 - b. (10 pts) ... cylindrical shells (probably easier).
- 3. (20 pts) A 4-kg bucket, holding 20 kg of water is hoisted up from a 30-meter-deep well on a chain that has linear density .5 kg/m. How much work is done lifting the bucket of water up to the top of the well? (Use 9.8 m/s^2 for the acceleration due to gravity.)
- 4. (20 pts) Find the average value, f_{AVG} , of $f(x) = 3x^2 2x + 5$ on the interval [1,6]. Then find all $c \in (1,6)$ such that $f(c) = f_{AVG}$

5. (10 pts) If
$$g(x) = \int_0^{\sin(x)} (\pi t^2 + 17t - \cos(t)) dt$$
, what is $g'(x)$?

6. Suppose x and y are related to one another by the equation $x^2 - 4x\sin(y) - y^3 = 81$.

a. (5 pts) Find
$$\frac{dy}{dx}$$
.

b. (5 pts) Based on part a., find an equation of the tangent line to the curve at the point (3,2).

Bonus Section Work up to 3 of the following problems, for up to 30 extra points.

Bonus 1 (10 pts) Use the limit definition of the derivative to find f'(x) for $f(x) = 2x^2 + 5x$.

Bonus 2 (10 pts) Prove that $\lim_{x\to 3} (5x-4) = 11$, using the formal definition of the limit.

Bonus 3 (10 pts) Evaluate the definite integral $\int_0^{\pi} |2\cos(x)-1| d\theta$

Bonus 4 (10 pts) Find all extreme values of $f(x) = \sin(2x) - x$ on $[0, 2\pi)$.

Bonus 5 (10 pts) Use the tangent line to approximate $\sqrt[3]{30}$.