\qquad

You know the drill. And remember to circle final answers.

1. (20 pts) Sketch and find the area of the region bounded by $f(x)=4 \sqrt{2 x}$ and $g(x)=2 x^{2}$.
2. Sketch the solid and then write the integral for the volume of the solid of revolution obtained by revolving the region bounded by $f(x)=4 \sqrt{2 x}$ and $g(x)=2 x^{2}$ about the y-axis, using...
a. (10 pts) ... washers (slices) and
b. (10 pts) ... cylindrical shells (probably easier).
3. (20 pts) A 4-kg bucket, holding 20 kg of water is hoisted up from a 30-meter-deep well on a chain that has linear density $.5 \mathrm{~kg} / \mathrm{m}$. How much work is done lifting the bucket of water up to the top of the well? (Use $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration due to gravity.)
4. (20 pts) Find the average value, $f_{A V G}$, of $f(x)=3 x^{2}-2 x+5$ on the interval $[1,6]$. Then find all $c \in(1,6)$ such that $f(c)=f_{A V G}$
5. (10 pts) If $g(x)=\int_{0}^{\sin (x)}\left(\pi t^{2}+17 t-\cos (t)\right) d t$, what is $g^{\prime}(x)$?
6. Suppose x and y are related to one another by the equation $x^{2}-4 x \sin (y)-y^{3}=81$.
a. $(5 \mathrm{pts})$ Find $\frac{d y}{d x}$.
b. (5 pts) Based on part a., find an equation of the tangent line to the curve at the point $(3,2)$.

Bonus Section Work up to 3 of the following problems, for up to 30 extra points.
Bonus 1 (10 pts) Use the limit definition of the derivative to find $f^{\prime}(x)$ for $f(x)=2 x^{2}+5 x$.

Bonus 2 (10 pts) Prove that $\lim _{x \rightarrow 3}(5 x-4)=11$, using the formal definition of the limit.

Bonus 3 (10 pts) Evaluate the definite integral $\int_{0}^{\pi}|2 \cos (x)-1| d \theta$

Bonus 4 (10 pts) Find all extreme values of $f(x)=\sin (2 x)-x$ on $[0,2 \pi)$.
Bonus 5 (10 pts) Use the tangent line to approximate $\sqrt[3]{30}$.

