\qquad

You know the drill. And remember to circle final answers.

1. (20 pts) Use the limit definition of the definite integral to evaluate $\int_{0}^{4}\left(x^{2}+3 x\right) d x$.
2. (10 pts) Show that $\int_{0}^{1} x^{2} d x=\int_{0}^{1}(1-\sqrt{y}) d y$ by evaluating each, separately.
3. (10 pts) Evaluate the definite integral: $\int_{0}^{\frac{\pi}{2}}|2 \sin (x)-1| d x$.
4. Evaluate the indefinite integrals:
a. (10 pts) $\int(3 x+1)^{4} d x$
b. (10 pts) $\int(3 x+1)^{4} x^{2} d x$
c. $(10$ pts $) \int \sec ^{4}(x) \tan (x) d x$
5. (10 pts) Evaluate the definite integral $\int_{0}^{\frac{\pi}{4}} \sec ^{4}(x) \tan (x) d x$
6. Suppose I'm pacing back and forth, thinking my usual deep thoughts, and my rate of speed is given by $r(t)$, in feet per second. Tell me what the following integrals represent:
a. $(5 \mathrm{pts}) \int_{0}^{3600}|r(t)| d t$
b. $(5 \mathrm{pts}) \int_{0}^{3600} r(t) d t$
7. Perform the indicated differentiation:
a. (5 pts) $\frac{d}{d x} \int_{0}^{x} \frac{\sin (3 t)}{t^{2}+4} d t$
b. (5 pts) $\frac{d}{d x} \int_{x^{2}}^{\cos (x)} \frac{\sin (3 t)}{t^{2}+4} d t$

See back page for bonus!

Bonus Section

Bonus 1 (5 pts) What would the x_{k} be in \#1, if we were integrating over [2,4], instead of $[0,4]$?

Bonus 2 (5 pts) Explain, with the help of some pictures, what's going on with the two integrals in \#3.
Bonus 3 (5 pts) Evaluate the definite integral $\int_{\frac{\pi}{4}}^{\frac{2 \pi}{3}}|\csc \theta \cot \theta| d \theta$
Bonus 4 (5 pts) Find an upper and lower bound for $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin (x) d x$, without evaluating the integral itself.
Bonus 5 (5 pts) Confirm that the hypotheses of the Mean Value Theorem hold for $f(x)=x^{3}-2 x^{2}+5 x-1$ on $[0,3]$, and find the c that is promised in the conclusion of the theorem.

Bonus 6 (5 pts) Compute the derivative of $f(x)=\sqrt{3 x}$ by the limit definition.
Bonus 7 (5 pts) Use the tangent line to approximate $\cos \left(33^{0}\right)$.

Bonus 8 (5 pts) Find $\frac{d y}{d x}$ if $x^{2}-3 x y+y^{2}=1$. Then find an equation of the tangent line to the curve at $(1,3)$.

Bonus 9 (5 pts) Explain, using the diagram, below, how Newton's Method takes us from our first guess, x_{1}, to our second guess, x_{2}. Then write the general recursion for Newton's Method.

