\qquad

You know the drill. And remember to circle final answers.

1. Let $f(x)=3 x^{4}+4 x^{3}-30 x^{2}+36 x$ for the following problems:
a. (10 pts) Sketch the graph of $f(x)$. Show all extreme points and inflection points. I expect to see a y intercept, but I'm not worried about x-intercepts, as long as they're in the right general location.
b. (10 pts) Find the maximum and minimum of $f(x)$ on the interval $[-4,4]$.
2. (10 pts) Confirm that the hypotheses of the Mean Value Theorem hold for $f(x)=x^{3}-2 x^{2}+5 x-1$ on $[-2,2]$, and find the c that is promised in the conclusion of the theorem.
3. (10 pts) Find all local extremes of $g(x)=3 \tan (x)-4 x$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Show all intercepts, extremes, asymptotes and inflection points.
4. (10 pts) Sketch the graph of a continuous function g that has all the properties given:
$g(-10)=-5, g(5)=6, g(10)=-2$,
$g^{\prime}(-10)=0, g^{\prime}(5)$ is undefined, $g^{\prime}(10)=0$
$g^{\prime}(x)>0$ on $(-\infty,-10) \cup(-10,5) \cup(10, \infty)$ and $g^{\prime}(x)<0$ on $(5,10)$
$g^{\prime \prime}(x)>0$ on $(-10,5) \cup(5, \infty)$ and $g^{\prime \prime}(x)<0$ on $(-\infty,-10)$

This function has a pointy spot.
5. Evaluate the following limits.
a. $(10$ pts $) \lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}-5 x+11}-4 x\right)$
b. $(10$ pts $) \lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}-5 x+11}+4 x\right)$
6. (10 pts) You don't need to graph $R(x)=\frac{3 x^{3}-14 x^{2}+23 x-10}{x^{2}-x-2}$, here, but I do want to see its asymptotes. Hint: This function has no holes. This problem requires no calculus.
7. (10 pts) Minimize the vertical distance between $g(x)=x^{2}-2 x-8$ and $h(x)=2 x^{2}-3 x+15$.
8. (10 pts) Use the curve at the bottom of Page 2 or one like it, to show me the derivation of Newton's Method.

Bonus Answer up to 2 Bonus questions.
Bonus 1 (10 pts) Finish sketching the graph of $R(x)$ from Problem \#6. Hint: One of $R(x)$'s x-intercepts is $\left(\frac{2}{3}, 0\right)$.
Bonus 2 (10 pts) Use a differential to approximate the error in the area of a disc of radius 3 cm , if the error in measuring the radius is up to 0.01 cm .

Bonus 3 (10 pts) Use the tangent line to approximate $\sqrt{97}$.
Bonus 4 (10 pts) Find $\frac{d y}{d x}$ if $x^{2}+3 x y+y^{2}=11$. Then find an equation of the tangent line to the curve at $(2,1)$.

