\qquad

You know the drill. And remember to circle final answers.

1. Let $f(x)=x^{3}+3 x^{2}-9 x-27$ for the following problems:
a. (10 pts) Sketch the graph of $f(x)$. Show all extreme points and inflection points. I also expect to see the x-intercept(s) and y-intercept. This one is cooked up to factor by grouping (like the previous version of the test was supposed to have!).
b. (10 pts) Find the maximum and minimum of $f(x)$ on the interval $[0,4]$.
2. (10 pts) Confirm that the hypotheses of the Mean Value Theorem hold for $f(x)=x^{3}+3 x^{2}-9 x-27$ on $[0,4]$, and find the c that is promised in the conclusion of the theorem.
3. (10 pts) Find all local extremes of $g(x)=3 \cot (x)+4 x$ in the interval $(0, \pi)$.
4. (10 pts) Sketch the graph of a continuous function g that has all the properties given:
$g(0)=4, g(1)=2, g(2)=1, g(3)=0, g(4)=2$,
$g^{\prime}(1)=g^{\prime}(3)=0$,
$g^{\prime}(x)<0$ on $(-\infty, 1) \cup(1,3)$,
$g^{\prime}(x)>0$ on $(3, \infty)$
$g^{\prime \prime}(2)=g^{\prime \prime}(4)=0$
$g^{\prime \prime}(x)>0$ on $(0,1) \cup(2,4)$,
$g^{\prime \prime}(x)<0$ on $(-\infty, 0) \cup(1,2) \cup(4, \infty)$
$\lim _{|x| \rightarrow \infty} g(x)=5$
5. Evaluate the following limits. (Take heed: x is approaching $-\infty$ in this version!)
a. $(10 \mathrm{pts}) \lim _{x \rightarrow-\infty}\left(\sqrt{16 x^{2}-5 x+11}-4 x\right)$
b. $(10$ pts $) \lim _{x \rightarrow-\infty}\left(\sqrt{16 x^{2}-5 x+11}+4 x\right)$
6. (10 pts) You don't need to graph $R(x)=\frac{2 x^{3}-5 x^{2}-x+6}{x^{2}-4 x+3}$, here, but I do want to see its asymptotes. Hint: This function has no holes. This problem requires no calculus.
7. (10 pts) Minimize the vertical distance between $g(x)=2 x^{2}+5 x+2$ and $h(x)=-x^{2}+17 x-17$.
8. (10 pts) Derive the recursion formula for Newton's method and use the figure, below to illustrate how x_{2} is obtained from x_{1}.

Bonus Answer up to 2 Bonus questions.
Bonus 1 (10 pts) Finish sketching the graph of $R(x)$ from Problem \#6. Hint: One of $R(x)$'s x-intercepts is (2,0).
Bonus 2 (10 pts) Use a differential to extimate how much paint it takes to cover a sphere of radius 5 m with a coat of paint that is 0.05 cm thick.

Bonus 3 (10 pts) Use the tangent line to approximate $\sqrt{104}$.
Bonus 4 (10 pts) Find $\frac{d y}{d x}$ if $x^{2}+3 x y+y^{2}=11$. Then find an equation of the tangent line to the curve at $(2,1)$.

