1. From Definition $1, \lim _{x \rightarrow 4} f(x)=f(4)$.
2. (a) $f$ is discontinuous at -4 since $f(-4)$ is not defined and at $-2,2$, and 4 since the limit does not exist (the left and right limits are not the same).
(b) $f$ is continuous from the left at -2 since $\lim _{x \rightarrow-2^{-}} f(x)=f(-2) . f$ is continuous from the right at 2 and 4 since $\lim _{x \rightarrow 2^{+}} f(x)=f(2)$ and $\lim _{x \rightarrow 4^{+}} f(x)=f(4)$. It is continuous from neither side at -4 since $f(-4)$ is undefined.
3. $g$ is continuous on $[-4,-2),(-2,2),[2,4),(4,6)$, and $(6,8)$.
4. The graph of $y=f(x)$ must have a removable
discontinuity (a hole) at $x=3$ and a jump discontinuity
at $x=5$.

5. $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}\left(x+2 x^{3}\right)^{4}=\left(\lim _{x \rightarrow-1} x+2 \lim _{x \rightarrow-1} x^{3}\right)^{4}=\left[-1+2(-1)^{3}\right]^{4}=(-3)^{4}=81=f(-1)$. By the definition of continuity, $f$ is continuous at $a=-1$.
6. $f(x)=\frac{1}{x+2}$ is discontinuous at $a=-2$ because $f(-2)$ is undefined.

7. $f(x)= \begin{cases}1-x^{2} & \text { if } x<1 \\ 1 / x & \text { if } x \geq 1\end{cases}$

The left-hand limit of $f$ at $a=1$ is
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(1-x^{2}\right)=0$. The right-hand limit of $f$ at $a=1$ is
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(1 / x)=1$. Since these limits are not equal, $\lim _{x \rightarrow 1} f(x)$

does not exist and $f$ is discontinuous at 1 .
21. $f(x)= \begin{cases}\cos x & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1-x^{2} & \text { if } x>0\end{cases}$
$\lim _{x \rightarrow 0} f(x)=1$, but $f(0)=0 \neq 1$, so $f$ is discontinuous at 0 .

41.
$f(x)= \begin{cases}1+x^{2} & \text { if } x \leq 0 \\ 2-x & \text { if } 0<x \leq 2 \\ (x-2)^{2} & \text { if } x>2\end{cases}$
$f$ is continuous on $(-\infty, 0),(0,2)$, and $(2, \infty)$ since it is a polynomial on
 each of these intervals. Now $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(1+x^{2}\right)=1$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(2-x)=2$, so $f$ is discontinuous at 0 . Since $f(0)=1, f$ is continuous from the left at 0 . Also, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2-x)=0$, $\lim _{x \rightarrow 2+} f(x)=\lim _{x \rightarrow 2^{+}}(x-2)^{2}=0$, and $f(2)=0$, so $f$ is continuous at 2 . The only number at which $f$ is discontinuous is 0 .
64.
$g(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { is rational } \\ x & \text { if } x \text { is irrational }\end{array}\right.$ is continuous at 0. To see why, note that $-|x| \leq g(x) \leq|x|$, so by the Squeeze Theorem $\lim _{x \rightarrow 0} g(x)=0=g(0)$. But $g$ is continuous nowhere else. For if $a \neq 0$ and $\delta>0$, the interval $(a-\delta, a+\delta)$ contains both infinitely many rational and infinitely many irrational numbers. Since $g(a)=0$ or $a$, there are infinitely many numbers $x$ with $0<|x-a|<\delta$ and $|g(x)-g(a)|>|a| / 2$. Thus, $\lim _{x \rightarrow a} g(x) \neq g(a)$.

