1.

(a) $\lim _{x \rightarrow 2}[f(x)+5 g(x)]=\lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2}[5 g(x)] \quad$ [Limit Law 1]
$=\lim _{x \rightarrow 2} f(x)+5 \lim _{x \rightarrow 2} g(x) \quad$ [Limit Law 3]
$=4+5(-2)=-6$
(b) $\lim _{x \rightarrow 2}[g(x)]^{3}=\left[\lim _{x \rightarrow 2} g(x)\right]^{3} \quad[$ Limit Law 6]
(c) $\lim _{x \rightarrow 2} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 2} f(x)} \quad$ [Limit Law 11] $=\sqrt{4}=2$
(e) Because the limit of the denominator is 0 , we can't use Limit Law 5. The given limit, $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$, does not exist because the denominator approaches 0

$$
\begin{array}{rlr}
\begin{array}{rlr}
\text { (d) } \begin{aligned}
\lim _{x \rightarrow 2} \frac{3 f(x)}{g(x)} & =\frac{\lim _{x \rightarrow 2}[3 f(x)]}{\lim _{x \rightarrow 2} g(x)}
\end{aligned} & \text { [Limit Law 5] } \\
& =\frac{3 \lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)} & \text { [Limit Law 3] } \\
& =\frac{3(4)}{-2}=-6 & \\
\text { (f) } \begin{aligned}
\lim _{x \rightarrow 2} \frac{g(x) h(x)}{f(x)} & =\frac{\lim _{x \rightarrow 2}[g(x) h(x)]}{\lim _{x \rightarrow 2} f(x)} \\
& \text { [Limit Law 5] } \\
& =\frac{\lim _{x \rightarrow 2} g(x) \cdot \lim _{x \rightarrow 2} h(x)}{\lim _{x \rightarrow 2} f(x)}
\end{aligned} & \text { [Limit Law 4] } \\
&
\end{array}
\end{array}
$$ while the numerator approaches a nonzero number.

2. (a) $\lim _{x \rightarrow 2}[f(x)+g(x)]=\lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} g(x)=2+0=2$
(b) $\lim _{x \rightarrow 1} g(x)$ does not exist since its left- and right-hand limits are not equal, so the given limit does not exist.
(c) $\lim _{x \rightarrow 0}[f(x) g(x)]=\lim _{x \rightarrow 0} f(x) \cdot \lim _{x \rightarrow 0} g(x)=0 \cdot 1.3=0$
(d) Since $\lim _{x \rightarrow-1} g(x)=0$ and g is in the denominator, but $\lim _{x \rightarrow-1} f(x)=-1 \neq 0$, the given limit does not exist.
(e) $\lim _{x \rightarrow 2} x^{3} f(x)=\left[\lim _{x \rightarrow 2} x^{3}\right]\left[\lim _{x \rightarrow 2} f(x)\right]=2^{3} \cdot 2=16$
(f) $\lim _{x \rightarrow 1} \sqrt{3+f(x)}=\sqrt{3+\lim _{x \rightarrow 1} f(x)}=\sqrt{3+1}=2$
3. $\lim _{t \rightarrow-2} \frac{t^{4}-2}{2 t^{2}-3 t+2}=\frac{\lim _{t \rightarrow-2}\left(t^{4}-2\right)}{\lim _{t \rightarrow-2}\left(2 t^{2}-3 t+2\right)}$
[Limit Law 5]

$$
\begin{array}{ll}
=\frac{\lim _{t \rightarrow-2} t^{4}-\lim _{t \rightarrow-2} 2}{2 \lim _{t \rightarrow-2} t^{2}-3} \lim _{t \rightarrow-2} t+\lim _{t \rightarrow-2} 2 & {[1,2, \text { and } 3]} \\
=\frac{16-2}{2(4)-3(-2)+2} & {[9,7, \text { and } 8]} \\
=\frac{14}{16}=\frac{7}{8} &
\end{array}
$$

9. $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}}=\sqrt{\lim _{x \rightarrow 2} \frac{2 x^{2}+1}{3 x-2}}$
[Limit Law 11]
$=\sqrt{\frac{\lim _{x \rightarrow 2}\left(2 x^{2}+1\right)}{\lim _{x \rightarrow 2}(3 x-2)}}$
$=\sqrt{\frac{2 \lim _{x \rightarrow 2} x^{2}+\lim _{x \rightarrow 2} 1}{3 \lim _{x \rightarrow 2} x-\lim _{x \rightarrow 2} 2}} \quad[1,2$, and 3$]$

$$
=\sqrt{\frac{2(2)^{2}+1}{3(2)-2}}=\sqrt{\frac{9}{4}}=\frac{3}{2} \quad[9,8, \text { and } 7]
$$

10.

(a) The left-hand side of the equation is not defined for $x=2$, but the right-hand side is.
(b) Since the equation holds for all $x \neq 2$, it follows that both sides of the equation approach the same limit as $x \rightarrow 2$, just as in Example 3. Remember that in finding $\lim _{x \rightarrow a} f(x)$, we never consider $x=a$.
11. $\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x-1)}{x-5}=\lim _{x \rightarrow 5}(x-1)=5-1=4$
13. $\lim _{x \rightarrow 5} \frac{x^{2}-5 x+6}{x-5}$ does not exist since $x-5 \rightarrow 0$, but $x^{2}-5 x+6 \rightarrow 6$ as $x \rightarrow 5$.
23. $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}=\lim _{x \rightarrow-4} \frac{\frac{x+4}{4 x}}{4+x}=\lim _{x \rightarrow-4} \frac{x+4}{4 x(4+x)}=\lim _{x \rightarrow-4} \frac{1}{4 x}=\frac{1}{4(-4)}=-\frac{1}{16}$
25. $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}=\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t} \cdot \frac{\sqrt{1+t}+\sqrt{1-t}}{\sqrt{1+t}+\sqrt{1-t}}=\lim _{t \rightarrow 0} \frac{(\sqrt{1+t})^{2}-(\sqrt{1-t})^{2}}{t(\sqrt{1+t}+\sqrt{1-t})}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{(1+t)-(1-t)}{t(\sqrt{1+t}+\sqrt{1-t})}=\lim _{t \rightarrow 0} \frac{2 t}{t(\sqrt{1+t}+\sqrt{1-t})}=\lim _{t \rightarrow 0} \frac{2}{\sqrt{1+t}+\sqrt{1-t}} \\
& =\frac{2}{\sqrt{1}+\sqrt{1}}=\frac{2}{2}=1
\end{aligned}
$$

31. $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h}$

$$
=\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right)=3 x^{2}
$$

39. $-1 \leq \cos (2 / x) \leq 1 \Rightarrow-x^{4} \leq x^{4} \cos (2 / x) \leq x^{4}$. Since $\lim _{x \rightarrow 0}\left(-x^{4}\right)=0$ and $\lim _{x \rightarrow 0} x^{4}=0$, we have $\lim _{x \rightarrow 0}\left[x^{4} \cos (2 / x)\right]=0$ by the Squeeze Theorem.
40. $\left|2 x^{3}-x^{2}\right|=\left|x^{2}(2 x-1)\right|=\left|x^{2}\right| \cdot|2 x-1|=x^{2}|2 x-1|$
$|2 x-1|=\left\{\begin{array}{ll}2 x-1 & \text { if } 2 x-1 \geq 0 \\ -(2 x-1) & \text { if } 2 x-1<0\end{array}= \begin{cases}2 x-1 & \text { if } x \geq 0.5 \\ -(2 x-1) & \text { if } x<0.5\end{cases}\right.$
So $\left|2 x^{3}-x^{2}\right|=x^{2}[-(2 x-1)]$ for $x<0.5$.
Thus, $\lim _{x \rightarrow 0.5^{-}} \frac{2 x-1}{\left|2 x^{3}-x^{2}\right|}=\lim _{x \rightarrow 0.5^{-}} \frac{2 x-1}{x^{2}[-(2 x-1)]}=\lim _{x \rightarrow 0.5^{-}} \frac{-1}{x^{2}}=\frac{-1}{(0.5)^{2}}=\frac{-1}{0.25}=-4$.
41. Since $|x|=-x$ for $x<0$, we have $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{-x}\right)=\lim _{x \rightarrow 0^{-}} \frac{2}{x}$, which does not exist since the denominator approaches 0 and the numerator does not.
42. Since $|x|=x$ for $x>0$, we have $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}} 0=0$.
43. (a) (i) $\lim _{x \rightarrow 2^{+}} g(x)=\lim _{x \rightarrow 2^{+}} \frac{x^{2}+x-6}{|x-2|}=\lim _{x \rightarrow 2^{+}} \frac{(x+3)(x-2)}{|x-2|}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2^{+}} \frac{(x+3)(x-2)}{x-2} \quad\left[\text { since } x-2>0 \text { if } x \rightarrow 2^{+}\right] \\
& =\lim _{x \rightarrow 2^{+}}(x+3)=5
\end{aligned}
$$

(ii) The solution is similar to the solution in part (i), but now $|x-2|=2-x$ since $x-2<0$ if $x \rightarrow 2^{-}$.

Thus, $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}}-(x+3)=-5$.
(b) Since the right-hand and left-hand limits of g at $x=2$
(c)
 are not equal, $\lim _{x \rightarrow 2} g(x)$ does not exist.
54. $\lim _{v \rightarrow c^{-}}\left(L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}\right)=L_{0} \sqrt{1-1}=0$. As the velocity approaches the speed of light, the length approaches 0 .

A left-hand limit is necessary since L is not defined for $v>c$.
58. (a) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left[\frac{f(x)}{x^{2}} \cdot x^{2}\right]=\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}} \cdot \lim _{x \rightarrow 0} x^{2}=5 \cdot 0=0$
(b) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0}\left[\frac{f(x)}{x^{2}} \cdot x\right]=\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}} \cdot \lim _{x \rightarrow 0} x=5 \cdot 0=0$
63. Since the denominator approaches 0 as $x \rightarrow-2$, the limit will exist only if the numerator also approaches 0 as $x \rightarrow-2$. In order for this to happen, we need $\lim _{x \rightarrow-2}\left(3 x^{2}+a x+a+3\right)=0 \Leftrightarrow$ $3(-2)^{2}+a(-2)+a+3=0 \Leftrightarrow 12-2 a+a+3=0 \Leftrightarrow a=15$. With $a=15$, the limit becomes $\lim _{x \rightarrow-2} \frac{3 x^{2}+15 x+18}{x^{2}+x-2}=\lim _{x \rightarrow-2} \frac{3(x+2)(x+3)}{(x-1)(x+2)}=\lim _{x \rightarrow-2} \frac{3(x+3)}{x-1}=\frac{3(-2+3)}{-2-1}=\frac{3}{-3}=-1$.

