Homework Assignments (Under Construction):

SEC	Problems
1.1	\#s 21, $25-43,47-59,63,73,77$ (Odds only)
1.2	\#s 5, 7, 9, 13 (Not a whole lot assigned. You should read and ask questions, though.)
1.3	\#s 17-23, $27-31,35,43,51,54$ (All odds, except for \#54)
1.4	\#s 5, 9
1.5	\#s $1,3,5,6,7,11,15,19,23^{1}, 25^{2}, 27,29,35,38$
1.6	\#s 1, 2, 5, 9, 11, 13, 18Bonus, 23, 25, 31, 39, 43, 45, 46, 47a, 49, Read \#54, 58*, 67
1.7	\#s 1, 11, 17, 18, 29, 32, 37
1.8	\#s 1, 3, 4, 7, 13, 17, 19, 21, 41, 64
2.1	\#s 1, 3, 4, 7, 8, 11, 12, 133, 33, $35-53$ and 54 are Bonus
2.2	\#s 5-11 Odds, 19, 23 - 25 ALL 41, 43
2.3 I	\#s 1-15 Odds, $17^{4}, 19^{5}, 23-35$ Odds (Due Thursday)
2.3 II	\#s 51, 52, 55, 57, 59, 63, 67, 69, 73, 75, 77, 79, 81, 89 (Due Friday)
2.4	\#s 3 - 25,31, 33, 35, 39, 43, 52B
2.5	\#s 1 - 31, 55, 70, 73
2.6	\#s 1-27, 45, 47
2.7	\#s 3-17, 23
2.8	\#s 3-17, 23
2.9	\#s 3-35

${ }^{1}$ We will eventually do this sort of limit analytically (i.e., with algebra techniques)
${ }^{2}$ FACT : $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\ldots .+x^{2}+x+1\right)$, e.g. $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ This is a fun fact(orization) that we will use to prove our power rule for derivatives in a week or so.
${ }^{3}$ This one should look familiar.
${ }^{4}$ There's a quick way to work this, if you're good with Algebra.
${ }^{5}$ Same as \#4, but it's even BETTER if you learn the Chain Rule, and apply IT to this power of a function. Chain Rule doesn't kick in until Section 2.5, ALAS!!! So let's talk about that one and leave it blank, with LOTS of room after it.

