\qquad
200 Points Comprehensive
Instructor: Dr. Harry S. Mills

Show all work. Do your own work. Submit problems in the proper order. Spread your work out! If you get stuck, start a fresh piece of paper. You can always insert more pages if you do it this way. Only your name should be on this cover sheet. Test is 1 hour, 50 minutes. Start a 12:10. End at 2:00.

1. Let $f(x)=2 x^{2}-3$. Find $\frac{d f}{d x}$ in two ways:
a. (10 pts) the limit definition.
b. (5 pts) the easy way.
2. Let $f(x)=2 x^{2}-3$.
a. (5 pts) Find an equation of the tangent line to f at $x=2$.
b. (5 pts) Sketch a graph of f and the tangent line you obtained in part a.
c. $(5 \mathrm{pts})$ Use your tangent line to approximate $f(2.5)$.
3. Evaluate the following limits.
a. (5 pts) $\lim _{x \rightarrow 3}\left(\frac{2 x^{2}-11 x+15}{3 x^{2}-7 x-6}\right)$
b. (5 pts) $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}-11 x+15}{3 x^{2}-7 x-6}\right)$
c. $(5 \mathrm{pts}) \lim _{x \rightarrow 3^{-}}\left(\frac{|x-3|}{x^{2}-x-6}\right)$
4. (5 pts) Prove that $\lim _{x \rightarrow 3}(2 x-5)=1$.
5. (5 pts) Convince me - without solving - that $f(x)=x^{3}-x^{2}-16 x+16$ has a zero in the interval $(0,2)$. I suggest use of a major theorem.
6. Sketch the graph of $f(x)=x^{3}-x^{2}-16 x+16$, showing all extremes and inflection points. Be smart about the time spent on calculations (a lot) versus points available for doing so (very little).
a. (5 pts) x-values corresponding to max/min. (Corresponding y-value: 0 points)
b. (5 pts) x-values corresponding to inflection points. (Corresponding y-value: 0 points)
c. (5 pts) Sign pattern on $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
d. (5 pts) x-intercepts and y-intercept.
e. (5 pts) Sketch, showing extremes, inflection point, and "shape" (concavity).
7. Find $\frac{d y}{d x}$:
a. (5 pts) $y=-\frac{1}{\sqrt[5]{x^{2}}}+5 x^{2}-4$
b. (5 pts) $y=2 x^{3} \cos \left(x^{2}-3\right)$
c. $(5 \mathrm{pts}) x^{2} y^{2}-3 x y-3 x=2 y^{2}+x y$
d. (10 pts) $y=\int_{0}^{x^{3}} \frac{t^{2} \sin (t)}{10-\cos ^{2}(t)} d t$
8. (10 pts) Use a differential to estimate the change in volume when a sphere's radius increases from 10 cm to 10.1 cm .
9. Let $f(x)=x^{3}-x^{2}-16 x+16$, once again.
a. (5 pts) Since it's a polynomial, it satisfies the hypotheses of the Mean Value Theorem on $[0,2]$. What are the hypotheses of the Mean Value Theorem, again?
b. (5 pts) Find all values c satisfying the conclusion of the theorem. That is, find c such that $f^{\prime}(c)=m_{\text {avg }}$ on $[0,2]$.
10. (10 points) This is a good place for the other Mean Value Theorem: Find all c in $(0,1)$ such that $g(c)=g_{\text {avg }}$ on $[0,1]$, for $g(x)=3 x^{2}-2 x-7$.
11. Let $h(x)=2 \sin (x) \cos (x)+x$.
a. (5 pts) Find all values x, where $h^{\prime}(x)=0$ in $(0,2 \pi)$.
b. (5 pts) Find all values x, where $h^{\prime \prime}(x)=0$.
12. Evaluate the indefinite integrals:
a. (10 pts) $\int \csc ^{2}(x) d x$
b. $(10 \mathrm{pts}) \int \frac{d x}{(\sqrt{x}+1)^{3}}$
c. $(10 \mathrm{pts}) \int x \csc ^{2}\left(4 x^{2}\right) d x$
13. (5 pts) Write - but do not evaluate - the integral that gives the area bounded by $y=2 x$ and $y=8-x^{2}$.
14. Write - but do not evaluate - the integral that gives the volume of the solid of revolution obtained when the region bounded by $y=16-x^{2}, x=0$, and $y=0$ is rotated around the x-axis in 2 ways:
a. (10 points) Using the disc method.
b. (10 points) Using the shell method.

Bonus. Answer ONE of the following for 10 points.
15. (10 points Bonus) Evaluate the integral: $\int_{0}^{5}\left|x^{2}-16\right| d x$
16. (10 points Bonus) Prove that $\lim _{x \rightarrow 3}\left(x^{2}-3 x-10\right)=-10$

17. (10 pts) Prove that $\lim _{x \rightarrow 3}\left(x^{2}-3 x-10\right)=-10$

