\qquad
80 Points Covers Chapter 4
NO GRAPHING CALCULATORS!!!
Instructor: Harry S. Mills

Show all work. Do your own work. Submit problems in the proper order. Spread your work out! If you get stuck, start a fresh piece of paper. You can always insert more pages if you do it this way. Only your name should be on this cover sheet. Test is 50 minutes. Start a 12:10. End at 1:00.

1. (20 pts) Evaluate $\int_{1}^{4}\left(x^{2}-2\right) d x$, by the limit definition of the definite integral.
2. Fundamental Theorem of Calculus time!
a. (10 pts) Evaluate $\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2}(x)-2\right) d x$ using the Fundamental Theorem of Calculus.
b. (10 pts) Evaluate $\frac{d}{d x} \int_{0}^{\sin (x)}\left(\frac{\sec ^{2}(t)+12 t}{t^{2}-7}\right) d t$ by the Fundamental Theorem.
3. The velocity of a particle, in meters per second, is given by $f(t)=t^{2}-5 t+6$, where $t=$ time, in seconds. Give exact answers to the following.
a. (10 pts) Find the net displacement of the particle, from time $t=0$ to time $t=3$.
b. (10 pts) Find the total distance travelled, from time $t=0$ to time $t=3$.
4. Substitution! Evaluate the following definite and indefinite integrals.
a. $(10 \mathrm{pts}) \int\left(\frac{d x}{(\sqrt{x}+1)^{3}}\right)$
b. (10 pts) $\int_{0}^{\frac{\pi}{6}} \sec ^{2}(2 x) d x$. I want an exact answer.

Bonus Answer any two of the following, for up to 10 bonus points.
5. (5 pts) Evaluate $\lim _{x \rightarrow-\infty}\left(\sqrt{49 x^{2}+3 x}+7 x\right)$.

6. (5 pts) Find all vertical and horizontal asymptote of $f(x)=\frac{x-3}{x+2}$, and use them, together with intervals of increase and decrease, and concavity to sketch the graph of f. (Show work!)
7. (5 pts) Find the equation of the oblique asymptote for $f(x)=\frac{2 x^{3}-5 x+6}{x^{2}-2 x}$

