\qquad

Show all work. Do your own work. Without supporting work, the slightest misstep leads to zero credit. Spread your work out! If you get stuck, start a fresh piece of paper. You can always insert more pages if you do it this way, but don't make me jump around, or cram your work into a small space with some misguided "Save the Trees!" thinking. WE save trees by doing our math well enough to get a job and plant more trees.

1. (15 pts) The point $P(2,-2)$ lies on the graph of $f(x)=x^{2}-3 x$. Estimate the slope of this curve at $x=2$, by evaluating the average slope between P and the point $Q\left(x, x^{2}-3 x\right)$, which is just another point on the graph of f. Use $x=2.001$ and $x=1.999$. I want your estimates to be accurate to the $4^{\text {th }}$ decimal place.
2. (5 pts) Tell me what you think the precise slope of f is, at $x=2$.
3. (5 pts) Based on your answer to \#2, write the equation of the tangent line to $f(x)=x^{2}-3 x$ at $x=2$.
4. (5 pts each) Evaluate the following limits, if they exist. When one does not exist, say so.
a. $\lim _{x \rightarrow 2} \frac{x^{2}+5 x-14}{2 x^{2}-9 x+10}$
b. $\quad \lim _{x \rightarrow 5^{-}} \frac{|x-5|}{3 x^{2}-11 x-20}$
c. $\lim _{x \rightarrow 5} \frac{|x-5|}{3 x^{2}-11 x-20}$
5. (15 pts) Sketch the graph of the piecewise-defined function $f(x)=\left\{\begin{array}{cl}2(x+2)^{2}-3 & \text { if } x<-1 \\ 2 x+3 & \text { if } x \geq-1\end{array}\right.$. On what interval(s) is it continuous?

Bonus (5 pts) What value of a will make $f(x)=\left\{\begin{array}{cl}2(x+2)^{2}-3 & \text { if } x<-1 \\ 2 x+a & \text { if } x \geq-1\end{array}\right.$ continuous?
6. Compute $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for the following.
a. (10 pts) $f(x)=x^{2}-3 x-7$
b. (5 pts) $f(x)=\sqrt{x}$
7. (10 pts) Sketch a plausible graph of a function, f, that satisfies all of the properties listed.
a. $\lim _{x \rightarrow-5^{-}} f(x)=3$
b. $\lim _{x \rightarrow-5^{+}} f(x)=1$
c. $f(-5)=3$
d. $\lim _{x \rightarrow 1^{-}} f(x)=-\infty$
e. $\lim _{x \rightarrow 1^{+}} f(x)=\infty$
f. $\lim _{x \rightarrow 4} f(x)=2$
g. $f(4)=3$
8. (10 pts) Prove that $\lim _{x \rightarrow 2}(3 x-2)=4$. (This is the $\varepsilon-\delta$ proof you're dying to do.)

See back side of this test!

9. (5 pts) Convince me that $f(x)=x^{4}-6 x^{3}+2 x^{2}+14 x+5$ has a zero in the interval $(2,3)$, without, you know, actually finding it.

Bonus Beyond this Point. Answer any 2 bonus problems for up to 20!? bonus points. I grade the first two I come to, so don't do 'em all and expect me to just grade the one(s) you got right. Teacher don't play dat.

Are you smarter than the average bear? This bear is smarter than the average ranger!

10. (10 pts) Prove that $\lim _{x \rightarrow 2}\left(x^{2}-3 x\right)=-2$, using the precise definition of limit.
11. (10 pts) Simplify the difference quotient and pass to the limit as h approaches zero for the function $f(x)=\frac{1}{\sqrt{x}}$.
12. (10 pts) See if you can squeeze out a convincing argument for the claim $\lim _{x \rightarrow 0}\left(x^{2} \sin \left(\frac{1}{x}\right)\right)=0$.
13. (10 pts) Write the definition of the piecewise-defined function from its graph.

