1. (10 pts) Let $f(x)=x^{3}-3 x^{2}+2 x$. Find all absolute and local extremes of f on the interval [0,3]. Final answers accurate to the $3^{\text {rd }}$ decimal place are acceptable.
2. (10 pts) Confirm that $f(x)=x^{3}-3 x^{2}+2 x$ satisfies the hypotheses of the Mean Value Theorem on the interval $[0,3]$. Then find all values c in $(0,3)$ that satisfy the conclusion of the theorem.
3. (10 pts) Let $f(x)=-2 \sin (x) \cos (x)-x$. Find all local extrema in the interval $[0,2 \pi]$.
4. (10 pts) Suppose a function g satisfies all of the following properties. Sketch a graph of g that incorporates all of the following properties into it:
$g(1)=-2 \quad g(2)=2 \quad g(3)=4$
$g^{\prime}(1)=0 \quad g^{\prime}(3)=0$
$g^{\prime}(x)>0$ on $(1,3) \cup(3, \infty), \quad g^{\prime}(x)<0$ on $(-\infty, 1)$
$g^{\prime \prime}(x)>0$ on $(-\infty, 2) \cup(3, \infty), \quad g^{\prime \prime}(x)<0$ on $(2,3)$
5. (5 pts each) Evaluate the limits:
a. $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+3 x+7}-3 x\right)$
b. $\lim _{x \rightarrow \infty}\left(\frac{3 x^{3}-6 x+7}{2-5 x^{2}-7 x^{3}}\right)$
6. (10 pts) Find the equation of the oblique asymptote for $R(x)=\frac{3 x^{3}-6 x+7}{x^{2}-5}$ This is sort of a limit at infinity.
7. (10 pts) Find the minimum vertical distance between $h(x)=2 x^{2}-5 x+12$ and $k(x)=1-3 x-x^{2}$.
8. (10 pts) Use the graph of the function $f(x)$, on the accompanying sheet, to show how x_{2} would be found by Newton's Method, in an attempt to find a root. Derive the formula for x_{2}, and explain what's going on.
9. (10 pts) Suppose $f^{\prime \prime}(x)=40 x^{3}-24 x^{2}+18 x-2$, and we have the initial conditions $f^{\prime}(1)=f(1)=3$. Find $f(x)$.

