- 1. (10 pts) Let $f(x) = x^3 3x^2 + 2x$. Find all absolute and local extremes of f on the interval [0, 3]. Final answers accurate to the 3rd decimal place are acceptable.
- 2. (10 pts) Confirm that $f(x) = x^3 3x^2 + 2x$ satisfies the hypotheses of the Mean Value Theorem on the interval [0, 3]. Then find all values c in (0, 3) that satisfy the conclusion of the theorem.
- 3. (10 pts) Let $f(x) = -2\sin(x)\cos(x) x$. Find all local extrema in the interval $[0,2\pi]$.
- 4. (10 pts) Suppose a function g satisfies all of the following properties. Sketch a graph of g that incorporates all of the following properties into it:

 $g(1) = -2 \quad g(2) = 2 \quad g(3) = 4$ $g'(1) = 0 \quad g'(3) = 0$ $g'(x) > 0 \text{ on } (1,3) \cup (3,\infty), \quad g'(x) < 0 \text{ on } (-\infty,1)$ $g''(x) > 0 \text{ on } (-\infty,2) \cup (3,\infty), \quad g''(x) < 0 \text{ on } (2,3)$

5. (5 pts each) Evaluate the limits:

a.
$$\lim_{x \to \infty} \left(\sqrt{9x^2 + 3x + 7} - 3x \right)$$

b.
$$\lim_{x \to \infty} \left(\frac{3x^3 - 6x + 7}{2 - 5x^2 - 7x^3} \right)$$

- 6. (10 pts) Find the equation of the oblique asymptote for $R(x) = \frac{3x^3 6x + 7}{x^2 5}$ This is *sort* of a limit at infinity.
- 7. (10 pts) Find the minimum vertical distance between $h(x) = 2x^2 5x + 12$ and $k(x) = 1 3x x^2$.
- 8. (10 pts) Use the graph of the function f(x), on the accompanying sheet, to show how x_2 would be found by Newton's Method, in an attempt to find a root. Derive the formula for x_2 , and explain what's going on.
- 9. (10 pts) Suppose $f''(x) = 40x^3 24x^2 + 18x 2$, and we have the initial conditions f'(1) = f(1) = 3. Find f(x).

